首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite concerns about building dampness and children’ health, few studies have examined the effects of building energy efficiency standards. This study explored the connections between self-reported household dampness and children’ adverse health outcomes across buildings corresponding to construction periods (pre-2001, 2001-2010, post-2010). Significant differences of dampness-related indicators were found between buildings; the prevalence was remarkable in pre-2001 buildings. The prevalence of lifetime-ever doctor-diagnosed diseases for children was significantly associated with building dampness (adjust odd ratios > 1), but was not affected by construction periods. The hygrothermal performance for a typical residence was simulated, varying in U-values of envelopes and air change rates. The simulated performance improvement increased indoor temperatures in 2001-2010 and post-2010 buildings. The frequency with higher indoor relative humidity was higher in pre-2001 buildings, leading to the highest values for maximum mold index (Mmax) on wall surface, especially in winter. Compared to buildings in 2001-2010, increased insulation and lower air change rate led to a relatively higher relative humidity in post-2010 buildings, adversely increasing the Mmax values. The findings addressed the positive and negative role of building standard development, which help suggesting appropriate environmental and design solutions to trade-off energy savings and dampness/mold risk in residences.  相似文献   

2.
Microbial indoor air quality and respiratory symptoms of children were studied in 24 schools with visible moisture and mold problems, and in eight non-damaged schools. School buildings of concrete/brick and wooden construction were included. The indoor environment investigations included technical building inspections for visible moisture signs and microbial sampling using six-stage impactor for viable airborne microbes. Children's health information was collected by questionnaires. The effect of moisture damage on concentrations of fungi was clearly seen in buildings of concrete/brick construction, but not in wooden school buildings. Occurrence of Cladosporium, Aspergillus versicolor, Stachybotrys, and actinobacteria showed some indicator value for moisture damage. Presence of moisture damage in school buildings was a significant risk factor for respiratory symptoms in schoolchildren. Association between moisture damage and respiratory symptoms of children was significant for buildings of concrete/brick construction but not for wooden school buildings. The highest symptom prevalence was found during spring seasons, after a long exposure period in damaged schools. The results emphasize the importance of the building frame as a determinant of exposure and symptoms.  相似文献   

3.
Toxic microbial secondary metabolites have been proposed to be related to adverse health effects observed in moisture-damaged buildings. Initial steps in assessing the actual risk include the characterization of the exposure. In our study, we applied a multi-analyte tandem mass spectrometry-based methodology on sample materials of severely moisture-damaged homes, aiming to qualitatively and quantitatively describe the variety of microbial metabolites occurring in building materials and different dust sample types. From 69 indoor samples, all were positive for at least one of the 186 analytes targeted and as many as 33 different microbial metabolites were found. For the first time, the presence of toxic bacterial metabolites and their co-occurrence with mycotoxins were shown for indoor samples. The bacterial compounds monactin, nonactin, staurosporin and valinomycin were exclusively detected in building materials from moist structures, while chloramphenicol was particularly prevalent in house dusts, including settled airborne dust. These bacterial metabolites are highly bioactive compounds produced by Streptomyces spp., a group of microbes that is considered a moisture damage indicator in indoor environments. We show that toxic bacterial metabolites need to be considered as being part of very complex and diverse microbial exposures in 'moldy' buildings. PRACTICAL IMPLICATIONS: Bacterial toxins co-occur with mycotoxins in moisture-damaged indoor environments. These compounds are measurable also in settled airborne dust, indicating that inhalation exposure takes place. In attempts to characterize exposures to microbial metabolites not only mycotoxins but also bacterial metabolites have to be targeted by the analytical methods applied. We recommend including analysis of samples of outdoor air in the course of future indoor assessments, in an effort to better understand the outdoor contribution to the indoor presence of microbial toxins. There is a need for a sound risk assessment concerning the exposure to indoor microbial toxins at concentrations detectable in moisture-damaged indoor environments.  相似文献   

4.
Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case‐control study involving 150 children with new‐onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new‐onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new‐onset wheezing in a dose‐dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new‐onset wheezing. The association between mold and new‐onset wheeze was not modified by atopic status, suggesting a non‐allergic association.  相似文献   

5.
It has not yet been possible to quantify dose‐related health risks attributable to indoor dampness or mold (D/M), to support setting specific health‐related limits for D/M. An overlooked target for assessing D/M is moisture in building materials, the critical factor allowing microbial growth. A search for studies of quantified building moisture and occupant health effects identified 3 eligible studies. Two studies assessed associations between measured wall moisture content and respiratory health in the UK. Both reported dose‐related increases in asthma exacerbation with higher measured moisture, with 1 study reporting an adjusted odds ratio of 7.0 for night‐time asthma symptoms with higher bedroom moisture. The third study assessed relationships between infrared camera‐determined wall moisture and atopic dermatitis in South Korea, reporting an adjusted odds ratio of 14.5 for water‐damaged homes and moderate or severe atopic dermatitis. Measuring building moisture has, despite extremely limited available findings, potential promise for detecting unhealthy D/M in homes and merits more research attention. Further research to validate these findings should include measured “water activity,” which directly assesses moisture availability for microbial growth. Ultimately, evidence‐based, health‐related thresholds for building moisture, across specific materials and measurement devices, could better guide assessment and remediation of D/M in buildings.  相似文献   

6.
As indoor air quality complaints cannot be explained satisfactorily and building materials can be a major source of indoor air pollution, we hypothesized that emissions from building materials perceived as unfamiliar or annoying odors may contribute to such complaints. To test this hypothesis, emissions from indoor building materials containing linseed oil (organic) and comparable synthetic (synthetic) materials were evaluated by a na?ve sensory panel for evaluation of odor intensity (OI) and odor acceptability (OA). The building materials were concealed in ventilated climate chambers of the CLIMPAQ type. When information was provided about the identity and type of building material during the evaluation, i.e. by labeling the materials in test chambers either as 'organic' or 'synthetic', the OI was significantly lower for all the 'organic' materials compared with evaluations without information. Similarly, OA was increased significantly for most 'organic' samples, but not the 'synthetic' ones. The major effect is probably that OA is increased when the panel is given information about the odor source. PRACTICAL IMPLICATIONS: As providing information about the source of odors can increase their acceptability, complaints about indoor air quality may be decreased if occupants of buildings are well informed about odorous emissions from the new building materials or new activities in their indoor environment.  相似文献   

7.
In the European research project OFFICAIR, a procedure was developed to determine associations between characteristics of European offices and health and comfort of office workers, through a checklist and a self‐administered questionnaire including environmental, physiological, psychological, and social aspects. This procedure was applied in 167 office buildings in eight European countries (Portugal, Spain, Italy, Greece, France, Hungary, the Netherlands, and Finland) during the winter of 2011–2012. About 26 735 survey invitation e‐mails were sent, and 7441 office workers were included in the survey. Among respondents who rated an overall comfort less than 4 (23%), ‘noise (other than from building systems)’, air ‘too dry’, and temperature ‘too variable’ were the main complaints selected. An increase of perceived control over indoor climate was positively associated with the perceived indoor environment quality. Almost one‐third of office workers suffered from dry eyes and headache in the last 4 weeks. Physical building characteristics were associated with occupants’ overall satisfaction (acoustical solutions, mold growth, complaints procedure, cleaning activities) and health (number of occupants, lack of operable windows, presence of carpet and cleaning activities). OFFICAIR project provides a useful database to identify stressors related to indoor environmental quality and office worker's health.  相似文献   

8.
Worldwide, public policies are promoting energy‐efficient buildings and accelerating the thermal renovation of existing buildings. The effects of these changes on the indoor air quality (IAQ) in these buildings remain insufficiently understood. In this context, a field study was conducted in 72 energy‐efficient dwellings to describe the pollutants known to be associated with health concerns. Measured parameters included the concentrations of 19 volatile organic compounds and aldehydes, nitrogen dioxide, particulate matter (PM2.5), radon, temperature, and relative humidity. The air stuffiness index and night‐time air exchange rate were calculated from the monitored carbon dioxide (CO2) concentrations. Indoor and outdoor measurements were performed at each dwelling during 1 week in each of the two following seasons: heating and non‐heating. Moreover, questionnaires were completed by the occupants to characterize the building, equipment, household, and occupants’ habits. Perspective on our results was provided by previous measurements made in low‐energy European dwellings. Statistical comparisons with the French housing stock and a pilot study showed higher concentrations of terpenes, that is, alpha‐pinene and limonene, and hexaldehyde in our study than in previous studies. Alpha‐pinene and hexaldehyde are emitted by wood or wood‐based products used for the construction, insulation, decoration, and furnishings of the dwellings, whereas limonene is more associated with discontinuous sources related to human activities.  相似文献   

9.
10.
We studied dampness and mold in homes in relation to climate, building characteristics and socio‐economic status (SES) across Europe, for 7127 homes in 22 centers. A subsample of 3118 homes was inspected. Multilevel analysis was applied, including age, gender, center, SES, climate, and building factors. Self‐reported water damage (10%), damp spots (21%), and mold (16%) in past year were similar as observed data (19% dampness and 14% mold). Ambient temperature was associated with self‐reported water damage (OR=1.63 per 10°C; 95% CI 1.02‐2.63), damp spots (OR=2.95; 95% CI 1.98‐4.39), and mold (OR=2.28; 95% CI 1.04‐4.67). Precipitation was associated with water damage (OR=1.12 per 100 mm; 95% CI 1.02‐1.23) and damp spots (OR=1.11; 95% CI 1.02‐1.20). Ambient relative air humidity was not associated with indoor dampness and mold. Older buildings had more dampness and mold (P<.001). Manual workers reported less water damage (OR=0.69; 95% CI 0.53‐0.89) but more mold (OR=1.27; 95% CI 1.03‐1.55) as compared to managerial/professional workers. There were correlations between reported and observed data at center level (Spearman rho 0.61 for dampness and 0.73 for mold). In conclusion, high ambient temperature and precipitation and high building age can be risk factors for dampness and mold in homes in Europe.  相似文献   

11.
Wu PC  Li YY  Chiang CM  Huang CY  Lee CC  Li FC  Su HJ 《Indoor air》2005,15(1):19-26
Our study conducted serial environmental measurements in 12 large office buildings with two different ventilation designs to obtain airborne microbial concentrations in typical office buildings, and to examine the effects of occupant density, ventilation type and air exchange efficiency on indoor microbial concentrations. Duplicate samples of airborne fungi and bacteria, a total of 2477 measurements, were collected based on a scheme of conducting sampling three times a day for at least seven consecutive days at every study building. Air change rates (ACHs) were also estimated by tracer gas concentration decay method, and measured by continuous Multi-Gas monitor for each building. Most sampling sites were with total fungal and bacteria concentrations higher than 1000 CFU/m(3), an often-quoted guideline in earlier research. Significantly higher concentrations of fungi and bacteria, as well as higher indoor/outdoor (I/O) ratios across most groups of airborne microbes, were identified in buildings with fan coil unit (FCU) system than those with air-handling unit (AHU) system (Student's t test, P < 0.0001). Older buildings and higher air exchange rates were statistically associated with greater indoor bacteria levels in FCU ventilated buildings (R(2) = 0.452); a pattern not found in AHU buildings. Increasing ACH seemed to be the determinant factor for rising indoor fungal and Cladosporium concentrations in those FCU buildings (R(2) = 0.346; 0.518). Our data indicated that FCU ventilated buildings might have provided more outdoor matters into indoor environments through direct penetration of outdoor air. Results also demonstrated a quantitative association between rising numbers of occupants and increasing indoor levels of yeast in both FCU and AHU ventilated buildings. The regression model identified in this study may be considered a reference value for proposing an optimal ACH, while with adequate filtration of fresh air, as an effective strategy in lowering indoor microbial concentrations in air-conditioned buildings. PRACTICAL IMPLICATIONS: As control of indoor microbial contamination has become an increasing concern around the world, feasibility and effectiveness of adopting ventilation approach has attracted a significant interest. This field investigation demonstrated, quantitatively, critical variables to be taken into consideration while applying such a measure, including the kinds of microbes to be removed and the types of ventilation system already in place.  相似文献   

12.
J. Sundell 《Indoor air》2017,27(4):708-724
The scientific articles and Indoor Air conference publications of the indoor air sciences (IAS) during the last 50 years are summarized. In total 7524 presentations, from 79 countries, have been made at Indoor Air conferences held between 1978 (49 presentations) and 2014 (1049 presentations). In the Web of Science, 26 992 articles on indoor air research (with the word “indoor” as a search term) have been found (as of 1 Jan 2016) of which 70% were published during the last 10 years. The modern scientific history started in the 1970s with a question: “did indoor air pose a threat to health as did outdoor air?” Soon it was recognized that indoor air is more important, from a health point of view, than outdoor air. Topics of concern were first radon, environmental tobacco smoke, and lung cancer, followed by volatile organic compounds, formaldehyde and sick building syndrome, house dust‐mites, asthma and allergies, Legionnaires disease, and other airborne infections. Later emerged dampness/mold‐associated allergies and today's concern with “modern exposures‐modern diseases.” Ventilation, thermal comfort, indoor air chemistry, semi‐volatile organic compounds, building simulation by computational fluid dynamics, and fine particulate matter are common topics today. From their beginning in Denmark and Sweden, then in the USA, the indoor air sciences now show increasing activity in East and Southeast Asia.  相似文献   

13.
Currently, there is little information pertaining to the airborne bacterial communities of green buildings. In this case study, the air bacterial community of a zero carbon building (ZCB) in Hong Kong was characterized by targeting the bacterial 16S rRNA gene. Bacteria associated with the outdoor environment dominated the indoor airborne bacterial assemblage, with a modest contribution from bacteria associated with human skin. Differences in overall community diversity, membership, and composition associated with short (day‐to‐day) and long‐term temporal properties were detected, which may have been driven by specific environmental genera and taxa. Furthermore, time‐decay relationships in community membership (based on unweighted UniFrac distances) and composition (based on weighted UniFrac distances) differed depending on the season and sampling location. A Bayesian source‐tracking approach further supported the importance of adjacent outdoor air bacterial assemblage in sourcing the ZCB indoor bioaerosol. Despite the unique building attributes, the ZCB microbial assemblage detected and its temporal characteristics were not dissimilar to that of conventional built environments investigated previously. Future controlled experiments and microbial assemblage investigations of other ZCBs will undoubtedly uncover additional knowledge related to how airborne bacteria in green buildings may be influenced by their distinctive architectural attributes.  相似文献   

14.
Qin Yang  Juan Wang  Dan Norbäck 《Indoor air》2021,31(5):1402-1416
Risk factors at home for ocular, nasal, throat and dermal symptoms, headache, and fatigue were studied in a nationwide questionnaire survey in Sweden, the BETSI study in 2006. Totally, 5775 adults from a stratified random sample of multi-family buildings participated. Associations between home environment factors and weekly symptoms were analyzed by multi-level logistic regression. In total, 8.3% had ocular symptoms; 11.9% nasal symptoms; 7.1% throat symptoms; 11.9% dermal symptoms; 8.5% headache and 23.1% fatigue. Subjects in colder climate zones had more mucosal and throat symptoms but less fatigue and ocular symptoms. Rented apartments had poorer indoor environment than self-owned apartments. Those living in buildings constructed from 1961 to 1985 had most symptoms. Building dampness, mold and mold odor were risk factors, especially headache and ocular symptoms. Lack of mechanical ventilation system was another risk factor, especially for headache. Environmental tobacco smoke (ETS), electric radiators, and crowdedness were other risk factors. Oiled wooden floors, recent indoor painting, and new floor materials were negatively associated with symptoms. In conclusion, building dampness, mold, poor ventilation conditions, crowdedness, ETS, and emissions from electric radiators in apartments in Sweden can increase the risk of ocular, nasal, throat and dermal symptoms, headache, and fatigue.  相似文献   

15.
Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity – variation in outdoor bioaerosols, ventilation strategy, and occupancy load – we conducted an intensive temporal study of indoor airborne bacterial communities in a high‐traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human‐associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment.  相似文献   

16.
A questionnaire on health symptoms, workplace conditions, and perceived indoor air quality was administered to 3948 employees of the Environmental Protection Agency in Washington, DC in the winter of 1989. The main goal was to determine the personal or workplace characteristics associated with health symptoms. A principal components analysis of 32 health symptoms identified 12 health factors. Each factor was generally associated with a particular body system (eyes, nose, throat, chest, central nervous system, etc.). The 12 health factors were regressed linearly on the 50-100 personal, workplace, and spatial characteristics identified from the questionnaire and building blueprints. Significant variables (p < 0.01) were included in a second logistic regression to determine a final model. Eleven variables were associated with multiple health factors. The main workplace variables were dust and glare. Personal characteristics of importance were mold allergies and sensitivity to chemicals. Among women, lack of a college degree was an important factor. Air quality factors of importance included hot stuffy air and dry air: The odor of paint and other chemicals, and the odor of cosmetics were also associated with four or more of the health factors. Two measures of stress – heavy workload and conflicting demands – were also associated with several health factors.  相似文献   

17.
Mechanical exhaust ventilation system is typical in apartment buildings in Finland. In most buildings the base floor between the first floor apartments and crawl space is not air tight. As the apartments have lower pressure than the crawl space due to ventilation, contaminated air may flow from the crawl space to the apartments. The object of this study was to find out whether a potential air flow from crawl space has an influence on the indoor air quality. The results show that in most cases the concentration of fungal spores was clearly higher in the crawl space than inside the building. The size distribution of fungal spores depended on the fungal species. Correlation between the fungal spores in the crawl space and indoors varied with microbial species. Some species have sources inside the building, which confounds the possible relation between crawl pace and indoor concentrations. Some species, such as Acremonium, do not normally have a source indoors, but its concentration in the crawl space was elevated; our measurements showed also elevated concentrations of Acremonium in the air of the apartments. This consistent finding shows a clear linkage between fungal spores in the indoor air and crawl space. We conclude that a building with a crawl space and pressure difference over the base floor could be a potential risk for indoor air quality in the first floor apartments.  相似文献   

18.
Exposure to moisture‐damaged indoor environments is associated with adverse respiratory health effects, but responsible factors remain unidentified. In order to explore possible mechanisms behind these effects, the oxidative capacity and hemolytic activity of settled dust samples (n = 25) collected from moisture‐damaged and non‐damaged schools in Spain, the Netherlands, and Finland were evaluated and matched against the microbial content of the sample. Oxidative capacity was determined with plasmid scission assay and hemolytic activity by assessing the damage to isolated human red blood cells. The microbial content of the samples was measured with quantitative PCR assays for selected microbial groups and by analyzing the cell wall markers ergosterol, muramic acid, endotoxins, and glucans. The moisture observations in the schools were associated with some of the microbial components in the dust, and microbial determinants grouped together increased the oxidative capacity. Oxidative capacity was also affected by particle concentration and country of origin. Two out of 14 studied dust samples from moisture‐damaged schools demonstrated some hemolytic activity. The results indicate that the microbial component connected with moisture damage is associated with increased oxidative stress and that hemolysis should be studied further as one possible mechanism contributing to the adverse health effects of moisture‐damaged buildings.  相似文献   

19.
Using a semi-quantitative mold exposure index, the National Institute for Occupational Safety and Health (NIOSH) investigated 13 college buildings to examine whether building-related respiratory symptoms among employees are associated with environmental exposure to mold and dampness in buildings. We collected data on upper and lower respiratory symptoms and their building-relatedness, and time spent in specific rooms with a self-administered questionnaires. Trained NIOSH industrial hygienists classified rooms for water stains, visible mold, mold odor, and moisture using semi-quantitative scales and then estimated individual exposure indices weighted by the time spent in specific rooms. The semi-quantitative exposure indices significantly predicted building-related respiratory symptoms, including wheeze [odds ratio (OR) = 2.3; 95% confidence interval (CI) = 1.1-4.5], chest tightness (OR = 2.2; 95% CI = 1.1-4.6), shortness of breath (OR = 2.7; 95% CI = 1.2-6.1), nasal (OR = 2.5; 95% CI = 1.3-4.7) and sinus (OR = 2.2; 95% CI = 1.2-4.1) symptoms, with exposure-response relationships. We found that conditions suggestive of indoor mold exposure at work were associated with building-related respiratory symptoms. Our findings suggest that observational semi-quantitative indices of exposure to dampness and mold can support action to prevent building-related respiratory diseases. PRACTICAL IMPLICATIONS: Current air sampling methods have major limitations in assessing exposure to mold and other biological agents that may prevent the demonstration of associations of bioaerosol exposure with health. Our study demonstrates that semi-quantitative dampness/mold exposure indices, based solely on visual and olfactory observation and weighted by time spent in specific rooms, can predict existence of excessive building-related respiratory symptoms and diseases. Relative extent of water stains, visible mold, mold odor, or moisture can be used to prioritize remediation to reduce potential risk of building-related respiratory diseases. From a public health perspective, these observational findings justify action to correct water leaks and repair water damage in order to prevent building-related respiratory diseases. This approach can also be a basis for developing practical building-diagnostic tools for water-incursion.  相似文献   

20.
污染物接触量是用以衡量环境污染对人类健康影响的指标之一。调查结果显示,香港居民日常生活主要在各类室内环境,特别是居住建筑中度过,其室内空气污染对居民健康构成威胁。本文的研究首先选择了多间香港不同类型居住建筑,对其室内PM10、CO、NO2等主要室内污染物浓度进行监测,并分析了室内、外PM10浓度与居民室内各种活动等其它有关因素之间的相关关系。其次,结合香港居民日常时间安排调查的结果,计算出各种室内污染物的接触量,对居住建筑室内环境污染对居民健康的影响进行了初步评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号