首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid re-endothelialization following balloon angioplasty can reduce restenosis by inhibiting smooth muscle cell migration and proliferation. However, formation of a neointima layer following angioplasty can be inhibited due to endothelial cell dysfunction and denudation. In a companion paper, it has been illustrated that mechanical loading causes a decrease in DNA synthesis in bovine aortic endothelial cells (BAECs) thus rendering them dysfunctional. The purpose of this study was to overcome BAEC dysfunction by incubation with pharmacological agents to increase DNA synthesis. Previous studies demonstrated that the adenosine dinucleotides Ap4A and Ap2A induced nitric oxide (NO) production from BAEC while Ap3A, Ap5A and Ap6A did not. This paper demonstrates that Ap4A and Ap2A induce a 1.46- and 1.16-fold increase in DNA synthesis in mechanically stressed BAECs respectively, while Ap3A, Ap5A and Ap6A do not. Additionally, NOC-18, a slow NO release NO donor, significantly increases DNA synthesis in mechanically stressed BAECs without affecting unloaded cells. These results are consistent with NO inducing DNA synthesis in mechanically stressed BAECs.  相似文献   

2.
During physiological loading, a tendon is subjected to tensile strains in the region of up to 6 per cent. These strains are reportedly transmitted to cells, potentially initiating specific mechanotransduction pathways. The present study examines the local strain fields within tendon fascicles subjected to tensile strain in order to determine the mechanisms responsible for fascicle extension. A hierarchical approach to the analysis was adopted, involving micro and macro examination. Micro examination was carried out using a custom-designed rig, to enable the analysis of local tissue strains in isolated fascicles, using the cell nuclei as strain markers. In macro examination, a video camera was used to record images of the fascicles during mechanical testing, highlighting the point of crimp straightening and macro failure. Results revealed that local tensile strains within a collagen fibre were consistently smaller than the applied strain and showed no further increase once fibres were aligned. By contrast, between-group displacements, a measure of fibre sliding, continued to increase beyond crimp straightening, reaching a mean value of 3.9 per cent of the applied displacement at 8 per cent strain. Macro analysis displayed crimp straightening at a mean load of 1 N and sample failure occurred through the slow unravelling of the collagen fibres. Fibre sliding appears to provide the major mechanism enabling tendon fascicle extension within the rat-tail tendon. This process will necessarily affect local and cellular strains and consequently mechanotransduction pathways.  相似文献   

3.
The effects of cyclic mechanical strain and challenge with physiologically relevant doses of submicrometre-size polyethylene (PE) particles on the osteolytic potential of primary human mononuclear phagocytes were investigated. Cells were seeded into a three-dimensional tissue matrix and co-cultured with particles (mean size 0.21 microm) at particle volume to cell number ratios of 7.5, 15, 30 and 100 microm3/cell. Matrices were then either cultured statically or subjected to 20 per cent cyclic compressional strain in the 'ComCell' for 16 h prior to the assessment of cell viability and quantification of the pro-inflammatory cytokine tumour necrosis factor alpha (TNFalpha). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazdium bromide) assay was shown to be too insensitive to detect changes in cell viability. However, when quantified by the adenosine triphosphate (ATP) assay, cell viability was demonstrated to be reduced following exposure to cyclic strain. Macrophages cultured in the static three-dimensional tissue equivalent model produced very high levels of TNFalpha in response to submicrometre PE particles at a ratio of 100 microm3/cell. Cyclic strain in the absence of particles gave only a small increase in TNFa production. However, the combined effects of strain and particle stimulation at a ratio of 30 microm3/cell resulted in the secretion of significantly more TNFalpha than was produced by macrophages subjected to strain alone, or the cells-only control. This synergy between cyclic strain and PE particle stimulation was only evident when the volume of particles was reduced below the volume that maximally stimulated cells. These results suggest that while cyclic strain may not be the primary factor responsible for macrophage activation and periprosthetic osteolysis, at low particle load, it may contribute significantly to the osteolytic potential of macrophages in vitro or in vivo.  相似文献   

4.
It has been proposed that the incidence of sternal dehiscence can be decreased by passing the wires used for sternotomy closure through cannulated screws. However, there is a potential risk of fatigue failure as a result of the wire moving against the screw, e.g. during coughing and sneezing. The system of cannulated screws and wire was subjected to static tensile testing to failure. Five tests were performed and failure occurred at 388 +/- 34 N (mean +/- SD). Ten cyclic tests were then performed. Sinusoidal loading was applied at 10 Hz with peak forces in the range 10-90 per cent of the static failure force, at a constant load ratio R = 10. The test with the lowest peak force reached run-out at 6 x 10(6) cycles. The others failed by the ends of the wire closures becoming untwisted (one test), the wire fracturing at the twist (three tests) or the wire fracturing at the screw (five tests). However, calculations based on these results suggest that fatigue failure is unlikely to occur as a result of regular breathing or continuous coughing or sneezing.  相似文献   

5.
通过在CMT4105试验机上进行准静态拉伸试验,在Hopkinson拉杆试验机上进行动态拉伸试验。在常温下,对DP1200冷轧双相钢进行应变速率为1×10~(-4) s~(-1)、1×10~(-3) s~(-1)、1×10~(-2) s~(-1)的准静态拉伸试验,以及应变速率为500 s-1、1 000 s-1、2 250 s-1的动态拉伸试验,并对拉伸断口进行形貌分析。结果表明:DP1200冷轧双相钢在准静态和动态变形条件下,随应变速率的增大,屈服强度s0.2从723 MPa增加到998 MPa,抗拉强度sb从1 205 MPa增加到1 515 MPa,断后伸长率从9.0%下降到7.7%,屈强比从0.60上升到0.66。准静态和动态拉伸的韧断口都呈现窝状,为韧性断口。应变速率为1×10~(-4) s~(-1)、1×10~(-3) s~(-1)、1×10~(-2)s~(-1)、500 s~(-1)、1 000 s~(-1)、2 250 s~(-1)断口韧窝平均尺寸分别为7.5μm、7.2μm、6.9μm、4.3μm、3.5μm和2.6μm,准静态拉伸不同应变速率下韧窝形貌变化不大,动态拉伸条件下随应变速率的增加断口韧窝变深。  相似文献   

6.
在实际工程中,机械结构件承受反复载荷时,内部往往是非对称的应力应变状态。在非对称循环加载条件下,材料不仅会表现出循环软/硬化特性,还会表现出平均应力松弛行为。这会影响其在循环稳定状态下的力学性能,进而影响结构在相应工况下承载服役的强度安全性。针对大型压机本体结构常用GS-20Mn5钢进行了单向拉伸及应变比R为0.5,应变幅0.20%、0.25%、0.27%、0.30%和0.40%的非对称应变循环加载试验研究,分别构建了基于单向拉伸试验结果的A-F随动硬化模型,以及基于非对称循环加载的Landgraf模型来描述其平均应力松弛特性,将其应用到Ramberg-Osgood公式中,结合A-F非线性随动硬化模型,建立了非对称循环加载条件下对应于循环应力-应变曲线的本构模型,并确定了相应模型参数。针对承受非对称循环载荷的某大型锻造液压机上横梁,应用所建立的本构模型分别进行了安定性数值分析,评估了其在循环载荷下的弹塑性强度安全性。结果显示,与采用单向拉伸条件下的A-F模型时的计算结果相比,采用非对称循环应力-应变本构模型时上横梁的安定极限载荷提高了约7%。  相似文献   

7.
Rapid prototyping (RP) technology has been used recently as a means for automated socket fabrication. Although the technology has proven to be promising and has truly automated the socket fabrication process, the structural integrity of RP sockets remains questionable. For the long term, unsupervised use of these 'unconventional' sockets, their material properties and structural integrity must be determined. This study investigated the structural integrity of polypropylene sockets manufactured using a polymer deposition technique, in which a socket is formed by a continuous strand of partially melted polypropylene that is spirally deposited according to the socket's cross-sectional contour. To investigate the problem of delamination of the socket, the tensile properties of the socket material were determined according to ASTM D638-99. The ultimate tensile strength was found to be approximately 13-23 per cent lower than that of polypropylene sheets that are at present normally used for socket fabrication. In order to improve the load-bearing capacity of the socket, it was reinforced using a double-wall arrangement at the distal region, where failure normally occurs. The structural integrity of the complete prosthesis was then investigated according to ISO 10328 (loading condition II). The prosthesis passed the static loading test registering only 12 mm permanent deformation, and it successfully completed a preliminary cyclic test of 250,000 cycles with no observable failure.  相似文献   

8.
The aim is to compare the strain pattern in intact and resurfaced femurs using validated third-generation composite femurs and rosette strain gauges. The rosette strain gauges were applied to an intact and a resurfaced third-generation composite femur at three sites: the narrowest part of the lateral surface of the neck, the narrowest part of the medial surface of the neck, and the medial surface at the level of the lesser trochanter. The maximum and minimum principal strains were calculated at axial loads of 600, 800, and 1000 N. Further tests were carried out with an additional abductor load. The maximum principal strains in the resurfaced femur were approximately 50 per cent higher in the lateral surface of the neck and about 25 per cent higher in the lesser trochanteric region than in the intact femur. Inclusion of the abductor force decreased the strains in both the intact and the resurfaced femurs, particularly at the lateral surface of the femoral neck. Increased strain at the lateral surface of the femoral neck following hip resurfacing could be a cause of neck fracture, particularly if there are other predisposing factors such as notching of the femoral neck and/or abductor dysfunction. Meticulous repair of the abductors is warranted if a lateral approach is used.  相似文献   

9.
Compression-induced damage in a muscle cell model in vitro   总被引:1,自引:0,他引:1  
Soft tissue breakdown can be initiated at the muscle layer associated with bony prominences, leading to the development of pressure ulcers. Both the magnitude and duration of pressure are important factors in this breakdown process. The present study utilizes a physical model, incorporating C2C12 mouse myoblasts in a homogeneous agarose gel, to examine the damaging effects of prolonged applied pressure. Identical cylindrical cores cut from the agarose/cell suspension were subjected to two separate compressive strains, of 10 and 20 per cent. The strain was applied for time periods ranging from 0.5 to 12 hours, using a specially designed loading apparatus. After each compression period, sections taken from the central horizontal plane of the individual constructs were stained using either haematoxylin and eosin or with the fluorescent probes, Calcein AM and ethidium homodimer-1, and assessed for cell damage. It was found that constructs subjected to the higher strain values demonstrated significantly higher values of non-viable cells for equivalent time points compared to the unstrained constructs. Further analysis on sections using the DNA nick-translation method suggested that this increase was primarily due to apoptosis. These findings imply a relationship between the duration of applied compression and damage to muscle cells seeded in the gel, which was particularly apparent at the strain level of 20 per cent, equivalent to a clinically relevant pressure of 32 mmHg (4.3 kPa). Such an approach might be useful in establishing damage threshold levels at a cellular level.  相似文献   

10.
For various applications, precision of the Young's modulus of cancellous bone specimens is needed. However, measurement variability is rarely given. The aim of this study was to assess the Young's modulus repeatability using a uniaxial cyclic compression protocol on embedded specimens of human cancellous bone. Twelve specimens from 12 human calcanei were considered. The specimens were first defatted and then 1 or 2 mm at the ends were embedded in an epoxy resin. The compression experiment consists in applying 20 compressive cycles between 0.2 per cent and 0.6 per cent strain with a 2 Hz loading frequency. The coefficient of variation of the current protocol was found to be 1.2 percent. This protocol showed variability similar to the end-cap technique (considered as a reference). It can be applied on porous specimen (especially human bone) and requires minimal bone length to limit end-artifact variability. The current method could be applied in association with noninvasive measurements (such as ultrasound) with full compatibility. This possibility opens the way for bone damage follow-up based on Young's modulus monitoring.  相似文献   

11.
An approximate method of calculating cyclic creep deformation is proposed based on the cyclic creep behaviour of materials. The calculated values of the number of cycles and the maximum tensile strain at the starting point of unstable cyclic deformation were compared with some experimental results and fairly good agreement obtained between them.Combining this result with the authors' previous study on fatigue-type fracture in low-cycle fatigue, the number of cycles at the transition from cyclic creep-type fracture to fatigue-type fracture can be estimated quantitatively for each cyclic loading condition with a given stress ratio. The adequacy of this estimation for determining a limit of cyclic creep-type fracture was verified with experimental data.  相似文献   

12.
为进一步挖掘材料的承载能力,以焊接结构常用材料Q235为研究对象,通过应变控制下的循环加载试验,得到了Q235在小变形量循环载荷作用下的应力应变曲线及特征,应力随循环周次的变化规律,并给出了相应的数学模型。试验结果表明,Q235在小应变对称循环载荷作用下表现出循环硬化特性和包申格效应,随循环周次的增加,循环硬化速率和包申格能量参数变化率最终均会达到一个稳定值;Q235在小应变非对称循环载荷作用下的变形特征,可以看作是其对应变初值和对称应变循环载荷叠加作用的响应,且随循环周次的增加,材料响应应力峰值与屈服应力逐渐回归于相同幅值对称应变作用下的相应数值。  相似文献   

13.
The main problem with polymeric heart valves (which are already biocompatible) is that they usually fail in the long term owing to tearing and calcification of the leaflets under high dynamic tensile bending stress and oxidative reactions with blood. To overcome this shortcoming, it is hypothesized that synthetic valve leaflets which mimic native valve leaflet structure fabricated from fibre-reinforced composite material will optimize leaflet stresses and decrease tears and perforations. The objective of this study is to develop a PVA-BC (polyvinyl alcohol-bacterial cellulose)-based hydrogel that mimics not only the non-linear mechanical properties displayed by porcine heart valves, but also their anisotropic behaviour. By applying a controlled strain to the PVA samples, while undergoing low-temperature thermal cycling, it was possible to create oriented mechanical properties in PVA hydrogels. The oriented stress-strain properties of porcine aortic valves were matched simultaneously by a PVA hydrogel (15 per cent PVA, 0.5 BC cycle 4, 75 per cent initial tensile strain). This novel technique allows the control of anisotropy to PVA hydrogel, and gives a broad range of control of its mechanical properties, for specific medical device applications.  相似文献   

14.
A small-scale biomechanical disc culture system was designed to stimulate intervertebral disc (IVD) 'motion segment' in culture environment with load-controlled compression and combined load (compression+shear). After 7 days of diurnal mechanical loading, cell viability of discs stimulated with static compression load (0.25 MPa) and static combined load (compression (0.25 MPa)+shear (1.5N)) were similar (>90 per cent) to unloaded controls. Mechanically stimulated discs showed decrease in static/dynamic moduli, early stress relaxation, and loss of disc height after 7 days of diurnal loading. Histological data of discs indicated load-induced transformations that were not apparent in controls. The feasibility of studying the mechanobiology of intact IVD as a motion segment was demonstrated. Media conditioning (improve tissue stability in long-term culture) and application of biochemical gene expression assays (differential tissue response to types of mechanical stimulation) are proposed as future improvements. The study suggests that the limitations in studying mechanobiology of IVD pathology in vitro can be overcome and it is possible to understand the physiologically relevant mechanism of IVD pathology.  相似文献   

15.
Cancellous bone is a two-phase material comprising a porous solid and a fluid. The intraosseous fluid fills the voids of the porous solid and occupies more than 85 per cent of the volume of cancellous bone. Cancellous bone undergoes various loadings; therefore could the intraosseous fluid in cancellous bone bear external load significantly? To answer this question, a specific experimental setup representing the most restrictive fluid flow boundaries around a bovine vertebral cancellous bone sample was designed. Then, a quasi-static loading was applied up to the strain of 0.6 per cent as the measured intraosseous pressure changed in the undrained and drained conditions. A significant intraosseous pressure was generated in the undrained condition, but no intraosseous pressure generation was generated in the drained condition. The maximum external load-bearing capability of the intraosseous fluid in bovine vertebral cancellous bone at the strain of 0.6 per cent was about 66 per cent of the total load in the experimental setup used in this study.  相似文献   

16.
Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A16061T-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.  相似文献   

17.
贺斌  傅祥炯 《机械强度》1997,19(2):51-54
对承受循环压载的缺口试件的疲劳问题进行了试验和理论研究。结果表明,疲劳裂纹是在残余拉应力和循环压应力作用下萌生和扩展的,压塑性变形是裂纹萌生和扩展和扩展的必要条件。循环压载下仍存在着裂纹张开和裂纹闭合,其机理与拉伸循环下不同。以试验中采用的LY12CA材料边缺口试件为例,提出了考虑裂纹闭合效应的扩展率计算模型,结果与试验吻合得较好。  相似文献   

18.
This paper is concerned with the dynamic tensile characteristics of transformation-induced plasticity (TRIP)-type and dual phase (DP)-type steel sheets at intermediate strain rates ranging from 0.003 to 200 s−1. The dynamic responses of TRIP600, TRIP800, DP600 and DP800 steel sheets are investigated with the evaluation of stress–strain curves, the strain rate sensitivity, the fracture elongation and the effect of pre-strain. The dynamic responses were acquired from dynamic tensile tests at the intermediate strain rates with a high-speed material testing machine developed. Experiments were carried out with specimens whose dimensions were carefully determined by finite element analyses and experiments to induce uniform deformation in the gauge section at the intermediate strain rates. The tensile tests provide stress–strain curves and the strain rate sensitivity. Experimental results show two important aspects for TRIP-type and DP-type steel sheets quantitatively: The flow stress increases as the strain rate increases and the fracture elongation and the formability of TRIP-type sheets are better than those of DP-type sheets at the intermediate strain rates. The pre-strain effect was also investigated for two types of metals at the intermediate strain rates. TRIP600 and DP600 steel specimens pre-stained by 5% and 10% were elongated at the strain rate of 0.003 s−1 for quasi-static loading, and then tested at strain rates of 0.003, 1, 10 and 100 s−1. The results demonstrate that the mechanical properties of TRIP600 and DP600 steels are noticeably influenced by the pre-strain when the strain rate is over 1 s−1. The ultimate tensile strength as well as the yield stress increases due to the pre-strain.  相似文献   

19.
The strain cyclic characteristics and ratcheting behaviour of U71Mn rail steel were experimentally investigated under uniaxial cyclic loading at room temperature. The effects of cyclic strain amplitude, mean strain, strain rate and their histories on strain cyclic characteristics were studied. The effects of stress amplitude, mean stress and their histories on the ratcheting under asymmetrical stress cycling were also analysed. Then, the interaction between strain cycling and stress cycling was discussed, too. Based on the experimental stress–strain data, the plastic flow properties of U71Mn rail steel under cyclic loading were analysed. Plastic modulus and its evolution rule were calculated from experimental data and were discussed under strain and stress cycling, respectively. It is shown that both the strain cyclic characteristics and ratcheting depend not only on current loading state, but also greatly on previous loading history. Under asymmetrical stress cycling, the evolution rule of plastic modulus is different from that under strain cycling. The strain cyclic characteristics and ratcheting behaviour of the material can be described essentially by the evolution of plastic flow.  相似文献   

20.
电流变液的力学性能参数是评价电流变液的性能指标之一 ,也是含电流变液智能结构建模所需的基本参数。对电流变液这种新兴的材料 ,其力学参数测试尚没有成熟统一的方法。本文研制了一系列电流变液力学参数专用测试仪器 ,并对所研制的电流变液的基本力学参数进行了系统的测试。结果表明 ,电流变液的拉伸模量和剪切模在屈服转捩前后有明显差异。本文所研制的电流变液在应力应变曲线上无过冲现象 ,其强度满足一定条件下的工程应用要求  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号