首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Laser-scattering techniques are utilized for the first time to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from the nebulizer tip to the site of analytical measurements. The resulting images provide key information about the spatial distribution of the aerosol introduced by direct injection and conventional sample introduction devices: (1) a direct injection high-efficiency nebulizer (DIHEN); (2) a large-bore DIHEN; and (3) a MicroFlow PFA nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry is used to study the in situ behavior of the aerosol before interaction with the plasma, while the individual surviving droplets are explored by particle tracking velocimetry. Directly introduced aerosols are highly scattered across the plasma torch as a result of their radial motion, indicating less than optimum sample consumption efficiency for the current direct injection devices. Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are critical in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and developing smart spectrometers.  相似文献   

2.
The direct injection high efficiency nebulizer (DIHEN) was explored for the ultrasensitive determination of long-lived radionuclides ((226)Ra, (230)Th, (237)Np, (238)U, (239)Pu, and (241)Am) and for precise isotope analysis by inductively coupled plasma mass spectrometry (ICPMS). The DIHEN was used at low solution uptake rates (1-100 μL/min) without a spray chamber. Optimal sensitivity (e.g., (238)U, 230 MHz/ppm; (230)Th, 190 MHz/ppm; and (239)Pu, 184 MHz/ppm) was achieved at low nebulizer gas flow rates (0.16 L/min), high rf power (1450 W), and low solution uptake rates (100 μL/min). The optimum parameters varied slightly for the two DIHENs tested. The detection limits of long-lived radionuclides in aqueous solutions varied from 0.012 to 0.11 ng/L. The sensitivity of the DIHEN was improved by a factor of 3 to 5 compared with that of a microconcentric nebulizer (MicroMist used with a minicyclonic spray chamber at a solution uptake rate of 85 μL/min) and a factor of 1.5 to 4 compared with that of a conventional nebulizer (cross-flow used with a Scott type spray chamber at a solution uptake rate of 1 mL/min). The precision of the DIHEN ranged from 0.5 to 1.7% RSD (N = 3) for all measurements at the 10 ng/L concentration level (~3 pg sample size). The sensitivity decreased to 10 MHz/ppm at a solution uptake rate of 1 μL/min. The precision was about 5% RSD at a sample size of 30 fg for each long-lived radionuclide by the DIHEN-ICPMS method. The oxide to atom ratios were less than 0.05 (except ThO(+)/Th(+) ) and decreased under the optimum conditions in the following sequence: ThO(+)/Th(+) > UO(+)/U(+) > NpO(+)/Np(+) > PuO(+)/Pu(+) > AmO(+)/Am(+) > RaO(+)/Ra(+). Atomic and oxide ions were used as analyte ions for ultratrace and isotope analyses of long-lived radionuclides in environmental and radioactive waste samples. The analytical methods developed were applied to the determination of long-lived radionuclides and isotope ratio measurements in different radioactive waste and environmental samples using the DIHEN in combination with quadrupole ICPMS. For instance, the (240)Pu/(239)Pu isotope ratio was measured in a radioactive waste sample at a plutonium concentration of 12 ng/L. This demonstrates a main advantage of DIHEN-ICPMS compared with α-spectrometry, which cannot be used to selectively determine (239)Pu and (240)Pu because of similar α energies (5.244 and 5.255 MeV, respectively).  相似文献   

3.
A pneumatically driven, high-efficiency cross-flow micronebulizer (HECFMN) is introduced for inductively coupled plasma (ICP) spectrometries. The HECFMN uses a smaller nozzle orifice for nebulizer gas (75 microm in diameter) and a replaceable and adjustable fused-silica capillary for sample uptake. The HECFMN is optimally operated over a wide range of sample uptake rate (5-120 microL/min) at a rf power of 1100 W and nebulizer gas flow rates of 0.8-1.0 L/min when a 50 microm i.d. by 150 microm o.d. capillary is used. The aerosol quality is qualitatively examined in a simple manner, and the transport efficiencies are determined by direct filter collection. Compared with conventional cross-flow nebulizers (CFNs), the HECFMN produces much smaller and more uniform droplets and thus provides much higher analyte transport efficiencies (generally 24-95%) at the sample uptake rates of 5-100 microL/min. Several analytical performance indexes are acquired using an Ar ICPMS system. The sensitivities and detection limits measured with the HECFMN at 50 microL/min sample uptake rate are comparable to or improved over those obtained with a conventional CFN consuming 1 mL/min sample, and the precisions with the HECFMN (typically 1.1-1.7% RSDs) are slightly better than those with the CFN (1.6-2.3% RSDs). The ratios of refractory oxide ion-to-singly charged ion (CeO+/Ce+) are typically in the range from 0.7 to 3.3% for the sample uptake rates of 5-100 microL/min. The free aspiration rate of the HECFMN is 8.9 microL/min for distilled deionized water at the nebulizer gas flow rate of 1.0 L/min without any effect of pressure. The features of the HECFMN suggest good potential for HECFMN use in interfacing ICPMS with capillary electrophoresis and microcolumn high-performance liquid chromatography.  相似文献   

4.
A thimble-shaped glass frit nebulizer has been developed for atomic spectrometry. The thimble glass frit was pressurized internally by gases such as helium (He) or argon (Ar) while the test solution was applied externally to the frit. The pressurized gas exited through the pores of the glass frit and shattered the thin liquid film flowing on the surface of the thimble-shaped device to form small droplets. A small spray chamber surrounded the nebulizer to remove the large droplets. Small droplets were then introduced into inductively coupled plasmas (ICP) sustained in either Ar or He. To reduce the memory effect noted in the frit-type nebulizers, a clean-out system was also devised. Detection limits, signal-to-background ratios (S/B), precision, memory effects, noise power spectra (NPS), and particle size distributions measured with the new nebulizer were compared to those of disk and cylindrical glass frit nebulizers and the commonly used pneumatic nebulizer for Ar ICP atomic emission spectrometry (AES). Analytical performance was also measured for He ICP by using frit-type nebulizers and an ultrasonic nebulizer.  相似文献   

5.
Two novel laser-based imaging techniques centered on particle image velocimetry and optical patternation are used to map and contrast the size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. The flow field of droplets is illuminated by two pulses from a thin laser sheet with a known time difference. The scattering of the laser light from droplets is captured by a charge-coupled device (CCD), providing two instantaneous images of the particles. Pointwise cross-correlation of the corresponding images yields a two-dimensional velocity map of the aerosol velocity field. For droplet size distribution studies, the solution is doped with a fluorescent dye and both laser-induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. The ratio of the LIF/Mie images provides relative droplet size information, which is then scaled by a point calibration method via a phase Doppler particle analyzer. Two major findings are realized for three nebulization systems: (1) a direct injection high-efficiency nebulizer (DIHEN); (2) a large-bore DIHEN; and (3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. First, the central region of the aerosol cone from the direct injection nebulizers and the nebulizer-spray chamber arrangement consists of fast (>13 and >8 m/s, respectively) and fine (<10 and <5 microm, respectively) droplets as compared to slow (<4 m/s) and large (>25 microm) droplets in the fringes. Second, the spray chamber acts as a momentum separator, rather than a droplet size selector, as it removes droplets having larger sizes or velocities. The concepts and results presented in this research may be used to develop smart-tunable nebulizers, for example, by using the measured momentum as a feedback control for adjusting the nebulizer, i.e., its operating conditions, its critical dimensions, or both.  相似文献   

6.
We have developed a nebulizer, called a multimicrospray nebulizer (MMSN), that efficiently introduces analytes for plasma mass spectrometry and plasma emission spectrometry. In this nebulizer, both the sample solution and the nebulizer gas are divided into several streams to produce a multispray. That is, the MMSN is a nebulizer that contains several micronebulization units, each unit including an orifice for passing the nebulizer gas and a capillary for introducing a sample solution. The microspray from each micronebulization unit can be operated at a microliter per minute sample uptake rate to achieve high nebulization efficiency. The multimicrospray nebulizer is capable of introducing more analyte to the plasma compared with a single-orifice micronebulizer, which has a very low sample uptake rate. In this work, an MMSN with three orifices was found to be suitable for microwave-induced plasma mass spectrometry (MIP-MS). The sample uptake rate can be varied within a range of 5-250 microL/min. Therefore, the nebulizer is unique in its ability to deal with various sample volumes and provide high nebulization efficiency. The sensitivity for all elements obtained with the MMSN was higher than that obtained with a conventional concentric nebulizer (CCN), which is difficult to achieve with other types of microintroduction nebulizers. For most elements, the MIP-MS sensitivity was improved about 2-fold at a sample uptake rate of 150 microL/min, a much lower rate than that for the CCN (usually 0.5-1.5 mL/min). The sensitivity for arsenic was improved by a factor of 5. The relative standard deviation was found to be less than 2.0%.  相似文献   

7.
A direct-injection high-efficiency nebulizer (DIHEN) is used to couple a thin-layer electrochemical flow cell on-line with an ICP-mass spectrometer to perform anodic stripping voltammetry (ASV) at a thin mercury film followed by subsequent ICPMS measurements for the stripped metal analytes. The resultant hyphenated technique (ASV-DIHEN-ICPMS) is capable of analyzing select heavy metals present at ultratrace levels (down to low-ppt to sub-ppt levels) that are lower than the detection limits obtained by conventional ICPMS. In addition to its good analytical performance, the technique offers other attractive features such as the ability to eliminate detrimental matrix effects that can compromise ICPMS analyses and the possibility of probing electrode reactions involving trace amounts metal species with ICPMS. For conducting ASV on-line with ICPMS, the DIHEN was found to be more advantageous than the microconcentric nebulizer in terms of minimizing memory effects and potential artifacts caused by the erosion of the Hg film into the flowing solution stream. Compared to a direct injection nebulizer (DIN), the DIHEN was easier to operate. Moreover, its simpler design and the lack of back pressure from the DIHEN capillary made it more compatible with coupling to the thin-layer electrochemical cell than a DIN system.  相似文献   

8.
A high efficiency nebulizer (HEN) coupled to a heated spray chamber and a membrane desolvator is used for liquid sample introduction in chemical reaction interface mass spectrometry (CRIMS). Compared to the conventional thermospray nebulizer operated at solvent flow rate of 1 mL/min, the HEN provides small droplets at lower flow rates (10-100 microL/min), improving the desolvation and analyte transport efficiency. As a result, the sensitivity for carbon detection by CRIMS is improved by a factor of 4. The new arrangement offers an easy-to-use and robust interface, facilitating the availability of a variety of liquid chromatographic techniques to the CRIMS. Separation and detection of labeled peptides in a mixture of unlabeled biopolymers is illustrated at a solvent flow rate of 45 microL/min as an example of new possibilities offered by the improved liquid introduction interface.  相似文献   

9.
A pneumatic nebulizer interface for capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICPMS) is reported. The interface is constructed using a high-efficiency cross-flow micronebulizer (HECFMN) and has the following features. (1) Makeup solutions can be fed to the interface by nebulizer self-aspiration and liquid gravity pressurization. (2) The liquid dead volume of the interface is approximately 65 nL, much smaller than those (200-2500 nL) reported for other interfaces. (3) The interface can be stably operated at a liquid flow rate down to 5 microL/min with a high analyte transport efficiency up to 95% to the plasma and (4) does not induce noticeable laminar flow in the CE capillary at typical nebulizer gas flow rates of 0.8-1.2 L/min. Because of these features, baseline resolution of 10 lanthanides with a CE-ICPMS system using the HECFMN interface is achieved, and detection limits and peak asymmetry are 0.05-1 microg/L and 0.93-1.23, respectively, improved significantly over those reported previously for a CE-ICPMS system using a high-efficiency nebulizer interface. Peak precision for the 10 lanthanides is in the range of 6.2-12.3% RSD (N = 5). Peak widths are from 9.1 s for 139La to 17.9 s for 175Lu. The effects of nebulizer gas flow rate, makeup solution flow rate, and spray chamber volume on CE-ICPMS signal intensity and separation are also evaluated for the HECFMN interface by the separation of Cr3+ and Cr2O7(2-).  相似文献   

10.
Inductively coupled plasma mass spectrometry (ICP-MS), coupled with a large-bore direct injection high efficiency nebulizer (LB-DIHEN), was utilized to determine the concentration and isotopic ratio of uranium in 11 samples of synthetic urine spiked with varying concentrations and ratios of uranium isotopes. Total U concentrations and (235)U/(238)U isotopic ratios ranged from 0.1 to 10 microg/L and 0.0011 and 0.00725, respectively. The results are compared with data from other laboratories that used either alpha-spectrometry or quadrupole-based ICP-MS with a conventional nebulizer-spray chamber arrangement. Severe matrix effects due to the high total dissolved solid content of the samples resulted in a 60 to 80% loss of signal intensity, but were compensated for by using (233)U as an internal standard. Accurate results were obtained with LB-DIHEN-ICP-MS, allowing for the positive identification of depleted uranium based on the (235)U/(238)U ratio. Precision for the (235)U/(238)U ratio is typically better than 5% and 15% for ICP-MS and alpha-spectrometry, respectively, determined over the concentrations and ratios investigated in this study, with the LB-DIHEN-ICP-MS system providing the most accurate results. Short-term precision (6 min) for the individual (235)U and (238)U isotopes in synthetic urine is better than 2% (N = 7), compared to approximately 5% for conventional nebulizer-spray chamber arrangements and >10% for alpha-spectrometry. The significance of these measurements is discussed for uranium exposure assessment of Persian Gulf War veterans affected by depleted uranium ammunitions.  相似文献   

11.
A novel, microfabricated heated nebulizer chip for atmospheric pressure photoionization-mass spectrometry (APPI-MS) is presented. The chip consists of fluidic and gas inlets, a mixer, and a nozzle etched onto silicon wafer that is anodically bonded to a Pyrex glass wafer, on which an aluminum heater is sputtered. A krypton discharge lamp is used as the source for 10-eV photons to initiate the photoionization process. Dopant, delivered as part of the sample solution, is used to achieve efficient ionization. The use of the microfabricated heated nebulizer with APPI in the analysis of four analytes is demonstrated, and the spectra are compared to those obtained with a conventional APPI source. Ionization in positive and negative ion modes was successfully achieved and the spectra were mainly similar to those obtained with conventional APPI, indicating that the ionization in microfabricated and conventional APPI sources takes place by the same mechanisms. The flow rates with conventional APPI are approximately 100 muL/min, whereas the microchip heated nebulizer allows the use of flow rates 0.05-5 muL/min, thus being compatible with microfluidic separation systems or micro- and nano-LC. A stable signal was demonstrated throughout a 5-h measurement, which proved the excellent stability of the micro-APPI. The same heated nebulizer chip can be used for weeks.  相似文献   

12.
Charged residues from the electrospray process have been hypothesized to limit the sensitivity and dynamic range of an ion trap mass spectrometry operation. Incorporation of an off-axis nebulizer (positioned 90-95° from the sampling orifice) was found to drastically reduce the detrimental effects caused by the charged particles or droplets compared to typical on-axis nebulization configurations (spraying 10-20° from sampling orifices). The off-axis nebulizer reduced total ion currents that enter the ion trap (through the reduction of charged residues) by a factor of 5-7 while resulting in an increase of analyte [M + H](+) signal by a factor of 6 compared to an on-axis sprayer at flow rates of 20 μL/min. At higher flow rates (e.g., 800 μL/min) these enhancements are more evident. At flows greater than 200 μL/min, off-axis nebulization reduced total ion current that enters the ion trap by a factor of 30 and resulted in a factor of more than 20 increase in [M + H](+) signal relative to on-axis nebulization. Incorporation of the off-axis nebulizer improved the detection limit and precision for determination of dihydroxyvitamin D(3) in plasma compared to on-axis nebulization. The LC/MS/MS detection limits obtained for the off-axis nebulizer on the ion trap was within a factor of 2 from the detection limit determined by the triple quadrupole. The relative standard deviation of the dihydroxyvitamin D(3) determination was less than 8% for both off-axis ion trap and triple-quadrupole determinations.  相似文献   

13.
A new thermospray nebulizer based on the absorption of microwave radiation (MWTN) by aqueous solutions of strong acids is presented for the first time. To this end, a given length of the sample capillary is placed inside the cavity of a focused microwave system. A small piece of a narrower capillary tubing is connected at the tip of the sample capillary, outside the microwave cavity, to build up pressure. Drop size distributions of primary aerosols are exhaustively measured in order to evaluate the influence of several experimental variables (microwave power, liquid flow, irradiation length, inner diameter of the outlet capillary, nature and concentration of the acid) on the characteristics of the primary aerosol that are related to the emission signal. These experiments have been performed mainly to increase our understanding of the microscopic process of this new type of aerosol generation. A standard Meinhard nebulizer was employed for comparison. Under the best conditions the entire aerosol volume is contained in droplets smaller than 20 μm compared with 45% of the volume of the aerosol generated by the Meinhard. Hence, higher analyte and aerosol transport rates are to be expected for the MWTN compared with the Meinhard nebulizer. As any highly efficient nebulizer, MWTN requires a desolvation unit. For solutions 0.75 M in strong acid, the new nebulizer improves sensitivity (1.0-2.8 times), limits of detection (1.2-3.0 times), and background equivalent concentration (0.9-2.0 times) as compared to the standard Meinhard nebulizer, features many of the advantages of the conventional thermospray nebulizer, and overcomes some of its drawbacks (MWTN does not show corrosion problems and works at lower pressure, the aerosol characteristics are not modified when the PTFE capillary is replaced).  相似文献   

14.
A novel nebulizer (nDS-200) working at sample uptake rates of less than 500 nL min(-1) was developed for a sheathless interfacing of nanoHPLC (75-microm column i.d.) with ICPMS. It was based on a hollow fused-silica needle of which the tip (i.d. 10 microm, o.d. 20 microm) centered in a 254-microm-i.d. sapphire orifice. The nebulizer, equipped with a 3-cm(3) drain-free vaporization chamber, enabled a stable introduction into an ICP of aqueous mobile phases containing up to 95% acetonitrile at eluent flow rates between 50 and 450 nL min(-1). The low dead volume of the interface resulted in a peak width of 1.3 s (at half-height) and the entirely preserved chromatographic resolution. An example application of the coupling to the analysis of a tryptic digest of a SIP18 protein containing two to nine selenomethionine residues was described. The absolute detection limit was 25 fg (80Se), which allowed the detection of low-abundant selenopeptides at the femtomole level. In contrast to electrospray MS, the ICPMS detection in nanoHPLC is unaffected by the coeluting matrix and concomitant compounds and offers an elegant method for the detection and quantification of minor heteroelement-containing species prior to or in parallel with ESI MS analysis.  相似文献   

15.
A novel approach was taken to increase the atomic/ionic absorption path length in an inductively coupled plasma (ICP) by using a water-cooled quartz "T-shaped" bonnet. Atomic and ionic absorption spectrometry was performed utilizing a continuum source and line sources. Absorption spectra of synthetic multielement solutions were collected with a photodiode array. Sample introduction into the ICP was accomplished with an ultrasonic nebulizer. To prevent the bonnet from cracking, low radio frequency powers were utilized (i.e., 400-600 W). Plasma diagnostics were performed to study the plasma temperature and electron number density within the "T-shaped" bonnet. Analytical figures of merit were found to be better than those obtained from previous work attempted with inductively coupled plasma atomic absorption spectroscopy and approaching that of flame atomic absorption spectroscopy.  相似文献   

16.
An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., ~50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule-of-thumb equation was extracted from the results from which the transition flow rate can be estimated for different injector diameters and different injector gas compositions.  相似文献   

17.
A method for estimating the regional lung dosages of a nebulized suspension is presented and applied to Pulmicort® & lpar;budesonide) suspension (4 ml, 0.5 mg/ml) nebulized with three Pari LC + nebulizers driven by a Pulmo-Aide compressor. The methodology combines experimental measurements of the nebulized aersol with a mathematical lung depositor model By adding medlylene blue as tracer for the water, cascade impaction with UV spectrophotometry is used to characterize the distribution of both budesonide and water in the inhaled droplets. Tidal breathing is simulated experimentally using a breath simulator to estimate the amount of inhaled drug. A valve system allows cascade impaction to occur at a constant flow rate of 28.3 l/min. while inhalation at 18 1/min. occurs through the nebulizer. Lung dosages (as % of inhaled dose) obtained with the methodology are in good agreement with values observed in vivo by previous researchers using pharmacokinetic methods with the LC+ nebulizer and the present budesonide formulation. Budesonide is found to be preferentially contained in the larger droplets, and calculated regional lung dosages show that an assumption of homogeneous distribution of the budesonide in the inhaled droplets is incorrect.  相似文献   

18.
The principle of an ultrasonic nebulizer is based on the vibrations of a piezoelectric crystal driven by an alternating electrical field. These periodic vibrations are characterized by their frequency, their amplitude, and their intensity, which corresponds to the energy transmitted per surface unit. When the vibration in tensity is sufficient, cavitation occurs, and droplets are generated. Ventilation enables airflow to cross the nebulizer and to expel the aerosol droplets. For a given nebulizer, the vibration frequency of the piezoelectric crystal is fixed, often in the range 1-2.5MHz. In most cases, an adjustment in vibration intensity is possible by modifying vibration amplitude. The ventilation level is adjustable. The vibrations may be transmitted through a coupling liquid--commonly water--to a nebulizer cup containing the solution to be aerosolized. In this work, we studied the influence of the technological parameters of ultrasonic nebulization on nebulization quality. Our study was carried out with a 9% sodium chloride solution and a 2% protein solution (alpha1 protease inhibitor). Three different ultrasonic nebulizers were used. An increase in vibration frequency decreased the size of droplets emitted. The coupling liquid absorbed the energy produced by the ultrasonic vibrations and canceled out any heating of the solution, which is particularly interesting for thermosensitive drugs. An increase in vibration intensity did not modify the size of droplets emitted, but decreased nebulization time and raised the quantity of protein nebulized, thus improving performance. On the other hand, an increase in ventilation increased the size of emitted droplets and decreased nebulization time and the quantity of protein nebulized because more drug was lost on the walls of the nebulizer. High intensity associated with low ventilation favors drug delivery deep into the lungs.  相似文献   

19.
The optimum operating parameters of the inductively coupled plasma (ICP) with organic solvents are different from those with aqueous solutions. With organic solvents, the ICP is operated at higher power to overcome plasma cooling due to the organic solvent, and aerosol desolvation is necessary in order to reduce solvent load into the plasma. The monodisperse dried microparticulate injector (MDMI) offers the possibility of controlling solvent load by controlling the frequency with which droplets are introduced into the plasma. A test solution that contained 0.5 mg/L Ba in xylene was used to study the influence of MDMI operating parameters on the behavior of the ICP with an organic solvent. The spatial and temporal distribution of the solvent in the ICP was determined for different droplet production frequencies and MDMI oven temperatures, and the optimum operating conditions were established. The best detection limit for Ba in xylene was 1.5 ng/mL, or 0.16 pg (in 200 droplets).  相似文献   

20.
We report the disordered silicon (Si) subwavelength structures (SWSs), which are fabricated with the use of inductively coupled plasma (ICP) etching in SiCl4 gas using nickel/silicon dioxide (Ni/SiO2) nanopattens as the etch mask, on Si substrates by varying the etching parameters for broadband antireflective and self-cleaning surfaces. For the fabricated Si SWSs, the antireflection characteristics are experimentally investigated and a theoretical analysis is made based on the rigorous coupled-wave analysis method. The desirable dot-like Ni nanoparticles on SiO2/Si substrates are formed by the thermal dewetting process of Ni films at 900 degrees C. The truncated cone shaped Si SWS with a high average height of 790 +/- 23 nm, which is fabricated by ICP etching with 5 sccm SiCl4 at 50 W RF power with additional 200 W ICP power under 10 mTorr process pressure, exhibits a low average reflectance of approximately 5% over a wide wavelength range of 450-1050 nm. The water contact angle of 110 degrees is obtained, indicating a hydrophobic surface. The calculated reflectance results are also reasonably consistent with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号