首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于尺度核函数的最小二乘支持向量机   总被引:1,自引:0,他引:1  
支持向量机的核函数一直是影响其学习效果的重要因素.本文基于小波分解理论和支持向量机核函数的条件,提出一种多维允许支持向量尺度核函数.该核函数不仅具有平移正交性,且可以以其正交性逼近二次可积空间上的任意曲线,从而提升支持向量机的泛化性能.在尺度函数作为支持向量核函数的基础之上,提出基于尺度核函数的最小二乘支持向量机(LS-SSVM).实验结果表明,LS-SSVM在同等条件下比传统支持向量机的学习精度更高,因而更适用于复杂函数的学习问题.  相似文献   

2.
水质系统是一个开放的、复杂的、非线性动力学系统,具有时变复杂性,针对水质预测方法的研究虽然已经取得了一些成果,但也存在预测精度与计算复杂度等难题。为此,本文提出一种基于最小二乘支持向量回归的水质预测算法。支持向量机是机器学习中一种常用的分类模型,通过核函数将非线性数据从低维映射到高维空间,在高维空间实现线性分类和回归,最小二乘支持向量回归(LS-SVR)利用所有的样本参与回归拟合,使得回归的损失函数不再只与小部分支持向量样本有关,而是由所有样本参与学习修正误差,提高预测精度;同时该算法将标准SVR求解问题由不等式的约束条件及凸二次规划问题转化成线性方程组来求解,提高了运算速度,解决了非线性复杂特性的水质预测问题。  相似文献   

3.
一种基于最小二乘支持向量机的预测控制算法   总被引:24,自引:0,他引:24  
刘斌  苏宏业  褚健 《控制与决策》2004,19(12):1399-1402
针对工业过程中普遍存在的非线性被控对象,提出一种基于最小二乘支持向量机建模的预测控制算法.首先,用具有RBF核函数的LS-SVM离线建立被控对象的非线性模型;然后,在系统运行过程中,将离线模型在每一个采样周期关于当前采样点进行线性化,并用广义预测算法实现对被控系统的预测控制.仿真结果表明了该算法的有效性和优越性.  相似文献   

4.
基于最小二乘支持向量机的离子传感器自校正的研究   总被引:2,自引:0,他引:2  
离子传感器是环境水质监测、污水处理、设施农业等领域的关键技术之一.由于离子传感器的非线性、漂移和交叉敏感性等影响其检测精度和可靠性,难以进行连续在线检测.本文研究硝酸根离子传感器的自校正方法,以适应动态环境的连续监测.根据实验数据,详细分析硝酸根离子传感器的响应特性,考虑零点和时间漂移,基于最小二乘支持向量机,提出一种硝酸根离子传感器的自校正方法,并给出详细描述和分析.实验结果表明其较显著地降低离子传感器的响应误差,验证本文所提方法的有效性.  相似文献   

5.
提出一种保证闭环系统稳定性的双模控制:采用预测控制将状态驱动到终端约束域,再利用局部线性控制将状态驱动到原点.在分析一类基于最小二乘支持向量机(LS-SVM)的预测控制的基础上,在常规的性能指标后附加了一个终端约束,并利用李亚普诺夫方法推导了确保闭环系统稳定性的4个充分条件.在此基础上,推导了基于最小二乘支持向量机的双模控制算法.仿真结果显示了算法的优越性.  相似文献   

6.
最小二乘隐空间支持向量机   总被引:9,自引:0,他引:9  
王玲  薄列峰  刘芳  焦李成 《计算机学报》2005,28(8):1302-1307
在隐空间中采用最小二乘损失函数,提出了最小二乘隐空间支持向量机(LSHSSVMs).同隐空间支持向量机(HSSVMs)一样,最小二乘隐空间支持向量机不需要核函数满足正定条件,从而扩展了支持向量机核函数的选择范围.由于采用了最小二乘损失函数,最小二乘隐空问支持向量机产生的优化问题为无约束凸二次规划,这比隐空间支持向量机产生的约束凸二次规划更易求解.仿真实验结果表明所提算法在计算时间和推广能力上较隐空间支持向量机存在一定的优势.  相似文献   

7.
针对AUV航向控制中存在不确定因素,尝试提出一种混沌最小二乘支持向量机(Chaos-LSSVM)的航向预测控制方案。由于AUV是典型的非线性系统,利用LSSVM解决航向非线性建模问题,采用Chaos算法在线优化LSSVM模型参数,预测控制AUV的航向,保证了航向预测控制的精度。最后Chaos-LSSVM与Fuzzy-PID预测控制器仿真结果对比表明,文中方法有效地提高了模型预测控制的精确性,且对于有海流海浪干扰及模型参数摄动具有较好的自适应抗干扰能力。  相似文献   

8.
一种稀疏最小二乘支持向量分类机   总被引:1,自引:0,他引:1  
一般的支持向量分类机需要求解二次规划问题,最小二乘支持向量机只需求解一个线性方程组,但其缺乏稀疏性.为了改进最小二乘支持向量分类机,本文结合中心距离比值及增量学习的思想提出一种基于预选、筛选支持向量的稀疏最小二乘支持向量机.该方法既能弥补最小二乘向量机的稀疏性,减少计算机的存储量和计算量,加快最小二乘支持向量机的训练速度和决策速度,又能对非均衡训练数据造成的分类面的偏移进行纠正,还不影响最小二乘支持向量机的分类能力.3组实验结果也证实了这一点.  相似文献   

9.
最小二乘支持向量机用于水量预测   总被引:1,自引:0,他引:1  
针对标准支持向量机建模时间长的缺点,为了城市用水量准确预测,需建立有效的预测模型.采用的最小二乘支持向量机基于结构风险最小化,并在支持向量机的基础上,将求解二次规划问题转化线性方程组,采用径向基核函数,使最小二乘支持向量机模型的待定参数比标准支持向量机少,可大大加快建模速度,同时还采用了人工免疫系统的自适应动态克隆选择算法,在寻优过程中能够准确、快速地搜索最小二乘支持向量机的最优参数.把上述模型用于城市日用水量预测,具有学习速度快.也具有良好的非线性建模和泛化能力,而且预测精度较高.  相似文献   

10.
针对非线性多入多出(MIMO)系统,提出一种基于最小二乘支持向量机(LSSVM)和混沌优化的预测 控制策略.预测模型是预测控制的三要素之一.本文给出了基于混沌优化的Chaos-LSSVM 算法,在可行域内反复搜 索,从而得到最优的LSSVM 算法参数,以及最优的LSSVM 模型.在线优化是另一个要素.提出了基于变尺度混沌 优化的MSC-MPC(变尺度混沌-模型预测控制)算法,可根据控制误差的大小,决定是否缩小搜索范围,从而迅速 收敛到最优解.该算法计算简单,容易实现,避免了同类方法复杂的求导、求逆运算.仿真结果显示:Chaos-LSSVM 算法和MSC-MPC 算法分别具有良好的建模、控制性能.  相似文献   

11.
最小二乘小波支持向量机的DNA序列分类方法   总被引:2,自引:0,他引:2       下载免费PDF全文
目前使用的已有SVM核函数,在分类中不能逼近某一L2R)(平方可积空间)子空间上的任意分类界面。针对上述问题,在支持向量机的核函数方法和小波框架理论的基础上,提出了LS-WSVM结构模型。实验结果表明,和标准的SVM和LS-SVM比较起来,在同等条件下,LS-WSVM在分类方面具有优良的特征提取性能。  相似文献   

12.
部分函数线性模型是用于处理输入变量包含函数型和数值型两种数据类型而输出变量为数值的一类回归机.为提高该模型的预测精度,基于函数系数在再生核Hilbert空间上的表示,得到模型的结构化表示,将函数系数的估计转化为参数向量的估计问题,并运用最小二乘支持向量机方法得到参数估计形式.实验表明,文中算法对数值型数据的向量系数的估计与其他参数估计方法性能相近,但对函数型数据的函数系数的估计更加准确稳健,有助于确保学习机的预测精度.  相似文献   

13.
提出一种稳健的LS-SVM回归算法。该算法建立在异常样本逐步剔除的框架上,每次循环中选择误差最大的样本加以考察,然后使用统计假设检验方法对其进行诊断。若样本被诊断为异常样本,则将其剔除,并重新训练LS-SVM,为下一轮的异常点诊断和剔除提供更准确的信息。同时为了减少运算复杂度,我们还将减量学习引入到算法的重新训练过程中,从而保证算法的附加复杂度不超过O(N3)。仿真数据集和实际数据集上的详细实验证实该算法的优越性,并提供一种使用该算法建立异常样本检测器的思路。  相似文献   

14.
函数拟合通常要在有限的训练样本下对函数变量之间的关系做出预测,在实践中由于训练样本有限,并且训练样本本身存在噪音和孤立点,用传统的方法进行函数拟合的结果往往不能满足要求.本文主要利用最小二乘支持向量机对函数进行拟合.首先介绍了最小二乘支持向量机的工作原理,并对参数选择方法进行了研究,然后通过仿真实验对利用最小二乘支持向量机进行函数拟合的效果加以对比说明.  相似文献   

15.
最小二乘双支持向量回归机(LSTSVR)通过引入最小二乘损失将双支持向量回归机(TSVR)中的二次规划问题简化为两个线性方程组的求解,从而大大减少了训练时间。然而,LSTSVR最小化基于最小二乘损失的经验风险易导致以下不足:(1)“过学习”问题;(2)模型的解缺乏稀疏性,难以训练大规模数据。针对(1),提出结构化最小二乘双支持向量回归机(S-LSTSVR)以提升模型的泛化能力;针对(2),进一步利用不完全Choesky分解对核矩阵进行低秩近似,给出求解S-LSTSVR的稀疏算法SS-LSTSVR,使模型能有效地训练大规模数据。人工数据和UCI数据集中的实验证明SS-LSTSVR不但可以避免“过学习”,而且能够高效地解决大规模训练问题。  相似文献   

16.
陈圣磊  陈耿  薛晖 《计算机工程》2011,37(22):145-147
最小二乘支持向量机在提高求解效率的同时,会丧失解的稀疏性,导致其在预测新样本时速度较慢。为此,提出一种稀疏化最小二乘支持向量机分类算法。在特征空间中寻找近似线性无关向量组,构造分类判别函数的稀疏表示,相应的最小二乘支持向量机优化问题可以通过线性方程组求解,从而得到最优判别函数。实验结果表明,该算法在不损失分类精度的前提下,能够获得比最小二乘支持向量机更快的预测速度。  相似文献   

17.
为提高网络流量的预测精度,提出一种基于混沌理论和最小二乘支持向量机相结合的网络流量预测方法。采用相空间重构对网络流量时间序列进行重构,恢复网络流量的演化轨迹,采用非线性预测能力强的最小二乘支持向量机对网络流量时间序列进行训练建模,采用混沌粒子群算法对最小二乘支持向量机参数进行优化,从而获得最优网络流量预测模型。用实际网络流量数据对该算法有效性进行验证,结果表明该方法能够很好刻画网络流量的变化趋势,提高了网络流量的预测精度,预测性能优于传统的预测方法。  相似文献   

18.
支持张量机(STM)受限于迭代操作,训练时间较长.针对这一缺点,改进STM的目标规划,将训练过程由解决一组二次规划改为计算线性方程组,并引入直推式的思想解决半监督问题,提出最小二乘半监督支持张量机学习算法.在人脸识别和时间序列分类上对比文中算法与传统算法,实验证明文中算法不仅减少运算时间,而且提高识别率.  相似文献   

19.
基于偏最小二乘的支持向量机多分类方法   总被引:1,自引:0,他引:1       下载免费PDF全文
该文提出了一种基于偏最小二乘(PLS)的支持向量机(SVM)多分类方法,该算法利用偏最小二乘思想对样本进行预处理,消除了样本属性之间的相关性,而且得到的综合属性与类信息的相关程度达到最大。通过实验可以看出,该方法不仅可以减少用支持向量机进行分类过程中的支持向量数目,而且当样本属性较多时,可以提高一定的识别率。  相似文献   

20.
改进的模糊最小二乘支持向量机模型   总被引:1,自引:1,他引:1       下载免费PDF全文
许亮 《计算机工程》2009,35(14):236-237
针对最小二乘支持向量机对噪声或孤立点敏感的问题,提出一种融合先验知识的模糊最小二乘支持向量机模型。在训练过程中考虑样本的噪声分布模型,结合样本紧密度策略,自动生成相应样本的模糊隶属度。实验结果表明,该模型对噪声样本具有较好的分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号