共查询到20条相似文献,搜索用时 46 毫秒
1.
基于尺度核函数的最小二乘支持向量机 总被引:1,自引:0,他引:1
支持向量机的核函数一直是影响其学习效果的重要因素.本文基于小波分解理论和支持向量机核函数的条件,提出一种多维允许支持向量尺度核函数.该核函数不仅具有平移正交性,且可以以其正交性逼近二次可积空间上的任意曲线,从而提升支持向量机的泛化性能.在尺度函数作为支持向量核函数的基础之上,提出基于尺度核函数的最小二乘支持向量机(LS-SSVM).实验结果表明,LS-SSVM在同等条件下比传统支持向量机的学习精度更高,因而更适用于复杂函数的学习问题. 相似文献
2.
水质系统是一个开放的、复杂的、非线性动力学系统,具有时变复杂性,针对水质预测方法的研究虽然已经取得了一些成果,但也存在预测精度与计算复杂度等难题。为此,本文提出一种基于最小二乘支持向量回归的水质预测算法。支持向量机是机器学习中一种常用的分类模型,通过核函数将非线性数据从低维映射到高维空间,在高维空间实现线性分类和回归,最小二乘支持向量回归(LS-SVR)利用所有的样本参与回归拟合,使得回归的损失函数不再只与小部分支持向量样本有关,而是由所有样本参与学习修正误差,提高预测精度;同时该算法将标准SVR求解问题由不等式的约束条件及凸二次规划问题转化成线性方程组来求解,提高了运算速度,解决了非线性复杂特性的水质预测问题。 相似文献
3.
4.
基于最小二乘支持向量机的离子传感器自校正的研究 总被引:2,自引:0,他引:2
离子传感器是环境水质监测、污水处理、设施农业等领域的关键技术之一.由于离子传感器的非线性、漂移和交叉敏感性等影响其检测精度和可靠性,难以进行连续在线检测.本文研究硝酸根离子传感器的自校正方法,以适应动态环境的连续监测.根据实验数据,详细分析硝酸根离子传感器的响应特性,考虑零点和时间漂移,基于最小二乘支持向量机,提出一种硝酸根离子传感器的自校正方法,并给出详细描述和分析.实验结果表明其较显著地降低离子传感器的响应误差,验证本文所提方法的有效性. 相似文献
5.
6.
7.
8.
最小二乘支持向量机用于水量预测 总被引:1,自引:0,他引:1
针对标准支持向量机建模时间长的缺点,为了城市用水量准确预测,需建立有效的预测模型.采用的最小二乘支持向量机基于结构风险最小化,并在支持向量机的基础上,将求解二次规划问题转化线性方程组,采用径向基核函数,使最小二乘支持向量机模型的待定参数比标准支持向量机少,可大大加快建模速度,同时还采用了人工免疫系统的自适应动态克隆选择算法,在寻优过程中能够准确、快速地搜索最小二乘支持向量机的最优参数.把上述模型用于城市日用水量预测,具有学习速度快.也具有良好的非线性建模和泛化能力,而且预测精度较高. 相似文献
9.
一种稀疏最小二乘支持向量分类机 总被引:1,自引:0,他引:1
一般的支持向量分类机需要求解二次规划问题,最小二乘支持向量机只需求解一个线性方程组,但其缺乏稀疏性.为了改进最小二乘支持向量分类机,本文结合中心距离比值及增量学习的思想提出一种基于预选、筛选支持向量的稀疏最小二乘支持向量机.该方法既能弥补最小二乘向量机的稀疏性,减少计算机的存储量和计算量,加快最小二乘支持向量机的训练速度和决策速度,又能对非均衡训练数据造成的分类面的偏移进行纠正,还不影响最小二乘支持向量机的分类能力.3组实验结果也证实了这一点. 相似文献
10.
基于最小二乘支持向量机和混沌优化的非线性预测控制 总被引:2,自引:2,他引:0
针对非线性多入多出(MIMO)系统,提出一种基于最小二乘支持向量机(LSSVM)和混沌优化的预测控制策略.预测模型是预测控制的三要素之一.本文给出了基于混沌优化的Chaos-LSSVM 算法,在可行域内反复搜索,从而得到最优的LSSVM 算法参数,以及最优的LSSVM 模型.在线优化是另一个要素.提出了基于变尺度混沌优化的MSC-MPC(变尺度混沌-模型预测控制)算法,可根据控制误差的大小,决定是否缩小搜索范围,从而迅速收敛到最优解.该算法计算简单,容易实现,避免了同类方法复杂的求导、求逆运算.仿真结果显示:Chaos-LSSVM算法和MSC-MPC 算法分别具有良好的建模、控制性能. 相似文献
11.
提出一种迭代再权q范数正则化最小二乘支持向量机(LS SVM)分类算法。该算法通过交叉校验过程选择正则化范数的阶次q (0
相似文献
12.
最小二乘小波支持向量机的DNA序列分类方法 总被引:2,自引:0,他引:2
目前使用的已有SVM核函数,在分类中不能逼近某一L2(R)(平方可积空间)子空间上的任意分类界面。针对上述问题,在支持向量机的核函数方法和小波框架理论的基础上,提出了LS-WSVM结构模型。实验结果表明,和标准的SVM和LS-SVM比较起来,在同等条件下,LS-WSVM在分类方面具有优良的特征提取性能。 相似文献
13.
分析了利用支持向量回归求解多分类问题的思想,提出了一种基于局部密度比权重设置模型的加权最小二乘支持向量回归模型来单步求解多分类问题:该方法先分别对类样本中每类样本利用局部密度比权重设置模型求出每个样本的权重隶属因子,然后运用加权最小二乘支持向量回归算法对所有样本进行训练,获得回归分类器。为验证算法的有效性,对UCI三个标准数据集以及一个随机生成的数据集进行实验,对比了多种单步求解多分类问题的算法,结果表明,提出的模型分类精度高,具有良好的鲁棒性和泛化性能。 相似文献
14.
多任务LS-SVM在时间序列预测中的应用 总被引:1,自引:0,他引:1
针对单任务时间序列中存在的信息挖掘不充分、预测精度低等问题,提出了一种基于多任务最小二乘支持向量机(MTLS-SVM)的时间序列预测方法。该方法将多个时间序列任务同时进行学习,使得在训练过程中任务之间能够相互牵制起到归纳偏置作用,最终有效提高模型的预测精度。首先,利用相邻时间点之间的密切相关性,构造多个相邻时间点的学习任务,然后将每个任务对应的数据集同时训练MTLS-SVM模型并将其用于预测。将该方法用于几个时间序列数据集并与单任务LS-SVM方法相比,实验结果表明该方法具有较高的预测精度,验证了方法的可行性和有效性。 相似文献
15.
由于极端支持向量分类机(ESVM)在对样本进行分类时并没有考虑到数据集中样本点的分布情况,对所有样本点的误差项都给予了相同的惩罚因子,使得分类器的分类效果很容易受到噪声、野值数据的干扰,针对这个问题,在ESVM的基础上提出了一种基于距离加权的极端支持向量机(WESVM)。由于不同的样本到其类中心距离的不同,因此对不同的样本给予不同的权重。分类实验结果表明WESVM与ELM、ESVM相比具有更好的分类精度。 相似文献
16.
为了对最小二乘支持向量机中样本的各个特征的差异性进行研究,引入了多参数高斯核,在分析核极化几何意义的基础上,提出了基于核极化梯度迭代优化多参数高斯核的特征选择算法。利用核极化梯度迭代算法对样本中每个特征的重要性程度进行测定;按特征的重要性大小进行LSSVM样本的特征选择;运用LSSVM对选出的特征子集进行训练和测试,称该方法为KP_LSSVM。UCI数据集上的实验结果表明,相较于PCA_LSSVM、KPCA_LSSVM和LSSVM方法,提出的方法可以取得更为准确的分类结果,验证了该方法的有效性。 相似文献
17.
基于无线接入点(Access Point,AP)接收信号强度(Received Signal Strength,RSS)的位置指纹室内定位技术近几年已经成为国内外位置感知研究的热点。提出了基于最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)的位置指纹定位方法。给出了基于LS-SVM的指纹定位模型,描述了LS-SVM指纹样本训练的具体实现过程。重点在于将定位问题转化为一个多类别分类问题,并分别采用一对一(OAO)和一对多(OAA)方法将其转化为多个二值分类问题。仿真结果表明,LS-SVM较传统支持向量机(SVMs)、K近邻(k-Nearest Neighbors,K-NN)定位方法的分类准确率高且计算代价小,平均分类准确率达92.00%。 相似文献
18.
基于偏最小二乘的支持向量机多分类方法 总被引:1,自引:0,他引:1
该文提出了一种基于偏最小二乘(PLS)的支持向量机(SVM)多分类方法,该算法利用偏最小二乘思想对样本进行预处理,消除了样本属性之间的相关性,而且得到的综合属性与类信息的相关程度达到最大。通过实验可以看出,该方法不仅可以减少用支持向量机进行分类过程中的支持向量数目,而且当样本属性较多时,可以提高一定的识别率。 相似文献
19.
本文首先研究了面向服务的体系结构及其在地理信息系统中的应用.而后在参考已有的地理信息系统的SOA架构的基础上,提出了将改进的最小二乘支撑向量回归机应用到该信息系统的统计分析服务器中,给统计分析服务器的设计提供了一种新的思路. 相似文献
20.
双链DNA解链温度的最小二乘支持向量机预测方法 总被引:1,自引:0,他引:1
在DNA计算中,为了确保计算结果的精度和可靠性,要求每个进行编码的DNA分子具有相同或者近似的热力学性质,解链温度Tm是评价DNA分子的热力学稳定性的一个重要的参数。以DNA序列的邻近法参数为基础,应用最小二乘支持向量机(LSSVM)的方法对解链温度进行预测。结果表明,DNA序列的解链温度误差可以达到±5 ℃的范围。 相似文献