首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 76 毫秒
1.
在中性气氛中,对以菱铁矿为主的某复杂难选铁矿石进行了磁化焙烧-磁选工艺研究。试验结果表明,最优工艺条件为:焙烧温度700℃,焙烧时间60 min,磨矿细度95%-0.044 mm,粗选作业磁场强度均为151.24 kA/m,精选磁场强度39.80 kA/m。获得TFe品位55.55%,回收率720.1%的铁精矿。  相似文献   

2.
为了实现赤泥中铁资源的高效回收,本文以广西某地拜耳法赤泥为原料,比较磁化焙烧—弱磁选和强磁抛尾—精矿焙烧—弱磁选两种方案下焙烧温度、焙烧时间和CO体积分数对弱磁选提铁行为的影响.结果表明:经1 440 kA/m强磁抛尾预处理后,在焙烧温度为650℃、焙烧时间为50 min、总气体流量为500mL/min、CO体...  相似文献   

3.
通过对某复杂褐铁矿进行磁化焙烧-磁选工艺条件的研究,在最佳焙烧温度750℃,焙烧时间50min,还原剂用量7%的磁化焙烧条件下,采用探索实验流程获得了铁精矿品位56.59%,铁回收率为74.60%的良好指标,对开发同类型矿石具有借鉴意义。  相似文献   

4.
某氟碳铈型稀土粗精矿中铁含量较高(全铁3%~10%)、稀土氧化物(REO)含量偏低,约占50%~60%,水分为6.5%;经工艺矿物学分析表明,粗精矿中铁元素主要以弱磁性的赤(褐)铁矿的形式存在,且部分铁矿物与氟碳铈矿解离不彻底,难以直接采用磁选方法与氟碳铈矿分离,因此采用磁化焙烧-磁选工艺提高REO品位。磁化焙烧热力学分析表明,在磁化焙烧过程中,氟碳铈矿发生分解反应,不会与铁氧化物发生反应;当温度高于626.85 ℃时,水会与碳发生水煤气反应产生CO和H2,即水分的存在有利于铁氧化物的还原。含水的稀土粗精矿在还原温度为650 ℃、还原时间为30 min和还原剂用量为2%的条件下,磁化焙烧的还原度为41.59%;经过一次粗选、再磨再选的工艺,精矿REO品位和回收率分别为68.53%、96.59%,铁粉的铁品位和回收率分别为68.56%、80.38%。该工艺的应用既提高了精矿REO和铁精矿品位,又省去了干燥作业。  相似文献   

5.
利用菱铁矿和赤铁矿在酸性体系中的溶解特性,无需添加任何铁离子,只需调节矿浆的pH值,然后通过控制反应温度即可实现矿物表面的自磁化.实验考察了反应时间、铁离子浓度、过氧化氢添加量和反应温度等因素对菱铁矿在酸性体系中溶解行为的影响.在100℃条件下,通过表面自磁化反应,菱铁矿磁选回收率从53.8%提高到94.6%,因此可以确定反应温度是影响自磁化的重要因素.利用赤铁矿和菱铁矿的混合矿物重复菱铁矿单矿物的自磁化实验,混合矿物回收率从66.8%提高到了72.6%.最后利用含有赤铁矿和菱铁矿的实际矿石进行自磁化实验,结果与单矿物实验和混合矿物实验相一致,磁选回收率从46.3%提高到了63.1%,实现了样品的自磁化.  相似文献   

6.
针对安徽某低品位褐铁矿石,采用磁化焙烧-磁选工艺进行了实验研究,对该矿的原矿进行了岩相分析,并对磁化焙烧-磁选工艺参数进行了优化.结果表明,该矿属低磷硫的低品位褐铁矿,褐铁矿与脉石矿物的镶嵌关系较为复杂,结晶水含量高,属难选矿石.对铁品位48.01%的原矿,在850℃、内配煤5%(质量分数)的条件下,磁化焙烧15min,焙烧矿磁化率达到最佳值,褐铁矿几乎全部转化为磁铁矿,这由X射线衍射结果证实.该褐铁矿通过磁化焙烧-磁选工艺可获得品位62.94%、回收率87.99%的铁精矿.  相似文献   

7.
鞍钢东部铁尾矿悬浮磁化焙烧-磁选试验   总被引:1,自引:0,他引:1  
为提取和回收鞍钢东部铁尾矿中的铁,采用实验室间歇式悬浮反应炉作为磁化焙烧装置,以高纯CO和N2的混合气体作为还原性气体,考察了铁品位为26.50%的鞍钢东部铁尾矿强磁再选精矿在悬浮磁化焙烧-磁选过程中的影响因素.试验结果表明,在气体流量为800 mL/min、焙烧温度为600℃、CO浓度为25%、焙烧时间为2.5 mi...  相似文献   

8.
结合酒钢镜铁山粉矿资源利用现状,针对铁粉矿现有磁化焙烧工艺存在的问题,提出对隧道窑磁化焙烧工艺进行研究与探索。首先,利用马弗炉对0~15 mm镜铁山粉矿进行了磁化焙烧试验探索,根据探索性试验结果和焙烧特性,初步确定了隧道窑磁化焙烧试验流程和主要参数;其次,根据镜铁山粉矿在马弗炉探索性试验取得的还原焙烧规律,利用30 m平铺料式隧道窑开展了磁化焙烧扩大试验,在隧道窑焙烧温度1 050~1 100℃、高温焙烧时间60 min、还原剂配比3%的试验条件下,0~15 mm镜铁山粉矿整车综合焙烧产品磁选精矿品位达到56%、金属回收率达到86.63%,与目前的强磁选工艺比较,磁选后的精矿品位提高约9个百分点,金属回收率提高约19个百分点,说明镜铁山粉矿通过隧道窑进行磁化焙烧在技术上是可行的。  相似文献   

9.
10.
针对粗铌精矿铁含量较高的特点,提出了采用还原磁化焙烧—酸浸工艺从粗铌精矿中回收铁、富集铌.以活性炭为还原剂进行磁化焙烧,用XCGS磁选管进行磁选,考察了还原温度、还原时间和激磁电流对磁选铁精矿指标的影响.结果表明,在750℃下还原45 min,粗铌精矿中的绝大部分赤铁矿被还原成磁铁矿,还原度接近理论值;还原矿在1.2A激磁电流下磁选得到铁精矿,铁品位为60.80%,收率为98.81%;磁选尾矿酸洗后,79.36%的铌留在尾矿中,Nb2O5品位达到12.46%.  相似文献   

11.
以四川某蛇纹石为原料,考察添加剂对还原与磁选富集镍铁的影响。结果表明,加入硫酸盐和碳酸盐各15%在1 100℃还原120min,然后在磁场强度79.62kA/m条件下磁选,精矿中镍和铁品位分别为5.99%和53.84%,镍和铁的回收率分别达到87.59%和72.09%。  相似文献   

12.
针对含钴高、含硫低且有相当数量铜的钴硫精矿进行焙烧-浸出,考察了焙烧温度、焙烧时间、添加剂用量、浸出时间、浸出温度及液固比等对铜和钴浸出率的影响。结果表明,钴硫精矿混合均匀后以2.7℃/min升温至620℃,焙烧3h,焙砂在80℃、用30g/L硫酸33%矿浆浓度浸出2h,钴、铜的浸出率分别为91%、90%。  相似文献   

13.
为提高红土镍矿金属品位及回收率,采用含碳球团还原焙烧-磁选分离工艺对镍品位为1.45%(质量分数,余同)的红土镍矿进行了处理,研究了还原温度、配碳量、还原时间以及磁选工艺对Ni、Fe品位和回收率的影响。试验结果表明:随着还原温度和配碳量的增加,Ni、Fe品位及回收率均会增加,其中温度的影响最大,配碳量次之,时间最小。1...  相似文献   

14.
酒钢本部尾矿坝现堆存铁品位21%~24%的尾矿约7 000万t,为使尾矿中的铁资源得以回收利用,开展了酒钢尾矿制粒-磁化焙烧-干选抛废-磨矿磁选试验研究,结果表明,在煤粉与矿样的质量比为1.5%,焙烧温度为810℃,焙烧时间为30 min,焙烧产物磨矿细度为-0.074 mm占80%,弱磁选磁场强度为125 m T条件下,可获得铁品位为56.13%、铁回收率为72.87%的铁精矿。  相似文献   

15.
硫铁矿烧渣磁化焙烧的实验研究   总被引:3,自引:0,他引:3  
用回转窑焙烧硫铁矿烧渣的磁化焙烧实验研究结果表明:硫铁矿烧渣与还原煤按一定比例混合,经回转窑磁化焙烧,在700℃下焙烧10min、物料填充率为11%时,能有效地将烧渣中弱磁性Fe2O3还原成强磁性Fe3O4,磁化率(ωTFe/ωFeO)可达2.38,接近理论值。通过球磨、磁选工艺,可以大幅度地提高精矿品位和金属回收率。同时,烧渣在回转窑内脱硫效果明显,回转窑倾角为0.8°、转速12r/min时,脱硫率可高达85%以上。  相似文献   

16.
基于煤基焙烧还原-磁选工艺,进行了宣龙式难选鲕状赤铁矿石提铁过程及其影响因素的实验研究.以铁精矿品位和铁回收率为评价指标,确定了适合于该类矿石的最佳工艺条件:焙烧还原温度为1 200℃,还原剂用量为30%,焙烧还原时间为60min,焙烧产物磁选前的磨矿细度为-45μm占96.19%,磁选的磁场强度为111kA·m-1.在该工艺条件下,可以使铁精矿品位达到92.53%,铁回收率达到90.78%.  相似文献   

17.
云南某金矿提金后的氰化尾矿堆存量日益增大,对安全环保等带来不良影响。同时尾矿中含有Au、Ag、Cu、Pb、Fe等有价金属,采用磁化焙烧工艺对其进行处理,可综合回收有价金属,在消除环境危害的同时增加经济效益。  相似文献   

18.
某难选赤褐铁矿主要铁矿物为赤褐铁矿,有害杂质硫、磷、砷含量较低。为了开发利用该铁矿资源,对其进行了选矿试验研究。原矿性质分析可知,铁品位为38.79%,铁矿石中赤铁矿占77.67%,褐铁矿占12.27%。条件试验研究表明,原矿经加煤粉还原焙烧后磨矿,再进行一次粗选、一次精选、一次扫选的磁选试验,最终可获得铁品位为61.53%,回收率为75.22%的铁精矿产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号