首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnSe:Cr single crystals were obtained using diffusion-related doping with chromium. The diffusion of chromium was performed in an atmosphere of saturated zinc vapors, and the metallic Cr layer deposited on the crystal surface was used as the source. Lines corresponding to chromium absorption at 2.766, 2.717, and 2.406 eV were observed in the optical-density spectrum at 77 K. The highest chromium concentration in the crystals was determined from infrared absorptance in the region of 0.72 eV and was found to be equal to 8 × 1019 cm?3. It is shown that the diffusion profile of the chromium impurity can be determined by measuring the optical density of the crystals in the visible region of the spectrum. The diffusion coefficients D of chromium in ZnSe crystals at temperatures of 1073–1273 K are calculated. An analysis of the temperature dependence D(T) made it possible to determine the coefficients in the Arrhenius equation: D0 = 4.7 × 1010 cm2/s and E = 4.45 eV.  相似文献   

2.
Diffusion of Cr into epitaxial GaAs in an open system in the temperature range of 750–850°C was studied. Temperature dependences of the diffusion coefficient and solubility of Cr in GaAs were determined. Temperature dependences of the diffusion coefficient and solubility of Cr are described by the Arrhenius equation with the parameters D 0 = 1.9 × 109 cm2/s and E = 4.1 ± 0.2 eV for the diffusion coefficient and N 0 = 2.3 × 1024 cm?3 and E 0 = 1.9 ± 0.4 eV for solubility. The effect of protective SiO2 filmon the Cr diffusion coefficient and morphology of the GaAs surface after diffusion was studied.  相似文献   

3.
The diffusion of magnesium impurity in the temperature range T = 600–800°C in dislocation-free single-crystal silicon wafers of p-type conductivity is studied. The surface layer of the wafer doped with magnesium by the ion implantation technique serves as the diffusion source. Implantation is carried out at an ion energy of 150 keV at doses of 5 × 1014 and 2 × 1015 cm–2. The diffusion coefficient of interstitial magnesium donor centers (D i ) is determined by measuring the depth of the p–n junction, which is formed in the sample due to annealing during the time t at a given T. As a result of the study, the dependence D i (T) is found for the first time. The data show that the diffusion process occurs mainly by the interstitial mechanism.  相似文献   

4.
The diffusion of yttrium in silicon is studied for the first time. The diffusion is performed in air or vacuum in the temperature range of 1100–1250°C. The temperature dependence of the diffusivity of yttrium in silicon is described by the relation D = 8 × 10?3 exp(?2.9 eV/kT) cm2 s?1. The acceptor nature of yttrium in silicon is revealed.  相似文献   

5.
The impact ionization of acceptors in aluminum-doped 4H-SiC epitaxial films (Al concentration 2 × 1015 cm?3) at a temperature of 77 K is studied. It is found that the impact-ionization coefficient exponentially depends on the reverse electric field: α p = α*pexp(?F*/F). The largest ionization coefficient is α* p = 7.1 × 106 cm?3 s?1, and the threshold field is F* = 2.9 × 104 V/cm.  相似文献   

6.
Chromium diffusion in GaAs was studied by measuring the thickness of high-resistivity layers formed during diffusion of chromium (a deep acceptor) in n-GaAs. The dependence of the chromium diffusivity in GaAs on the temperature, arsenic-vapor pressure, conductivity type, and carrier density was determined. The temperature dependence of the diffusivity is described by the Arrhenius equation with the parameters D0=8×109 cm2/s and E=4.9 eV. The dependence of the diffusivity on the arsenic-vapor pressure is described by the expression \(D \propto P_{As_4 }^{ - m} \), where m≈0.4. The experimental data obtained are interpreted in terms of the concept of the dissociative mechanism of migration of Cr atoms in GaAs.  相似文献   

7.
The results of studying the electrical properties and isochronous annealing of p-ZnSnAs2 irradiated with H+ ions (energy E = 5 MeV, dose D = 2 × 1016 cm?2) are reported. The limiting electrical characteristics of irradiated material (the Hall coefficient R H (D)lim ≈ ?4 × 103 cm3 C?1, conductivity σ (D)lim ≈ 2.9 × 10?2 Ω?1 cm?1, and the Fermi level position F lim ≈ 0.58 eV above the valence-band top at 300 K) are determined. The energy position of the “neutral” point for the ZnSnAs2 compound is calculated.  相似文献   

8.
Deep-level transient spectroscopy is used to study the formation of complexes that consist of a radiation defect and a residual impurity atom in silicon. It is established that heat treatment of the diffused Si p+-n junctions irradiated with fast electrons lead to the activation of a residual Fe impurity and the formation of the FeVO (E0.36 trap) and FeV2 (H0.18 trap) complexes. The formation of these traps is accompanied by the early (100–175°C) stage of annealing of the main vacancy-related radiation defects: the A centers (VO) and divacancies (V2). The observed complexes are electrically active and introduce new electron (E0.36: E t e =E c -0.365 eV, σ n =6.8×10?15 cm2) and hole (H0.18: E t h =E v +0.184 eV, σ p =3.0×10?15 cm2) levels into the silicon band gap and have a high thermal stability. It is believed that the complex FeVO corresponds to the previously observed and unidentified defects that have an ionization energy of E t e =E c ?(0.34–0.37) eV and appear as a result of heat treatment of irradiated diffused Si p+-n junctions.  相似文献   

9.
Hydrogenated silicon (Si:H) layers and Si:H/p-Si heterostructures were produced by multiple-energy (3–24 keV) high-dose (5×1016–3×1017 cm?2) hydrogen implantation into p-Si wafers. After implantation, current transport across the structures is controlled by the Poole-Frenkel mechanism, with the energy of the dominating emission center equal to E c ?0.89 eV. The maximum photosensitivity is observed for structures implanted with 3.2×1017 cm?2 of hydrogen and annealed in the temperature range of 250–300°C. The band gap of the Si:H layer E g ≈2.4 eV, and the dielectric constant ?≈3.2. The density of states near the Fermi level is (1–2)×1017 cm?3 eV?1.  相似文献   

10.
The results of investigations of electrical, optical, and photoelectric properties of CdIn2Te4 crystals, which were grown by the Bridgman method are presented. It is shown that electrical conductivity is determined mainly by electrons with the effective mass mn = 0.44m0 and the mobility 120–140 cm2/(V s), which weakly depends on temperature. CdIn2Te4 behaves as a partially compensated semiconductor with the donor-center ionization energy Ed = 0.38 eV and the compensation level K = Na/Nd = 0.36. The absorption-coefficient spectra at the energy < Eg = 1.27 eV are subject to the Urbach rule with a typical energy of 18–25 meV. The photoconductivity depends on the sample thickness. The diffusion length, the charge-carrier lifetime, and the surface-recombination rate are determined from the photoconductivity spectra.  相似文献   

11.
Boron diffusion and the vapor-phase deposition of silicon layers are used to prepare ultrashallow p+-n junctions and p+-Si-n-CdF2 heterostructures on an n-CdF2 crystal surface. Forward portions of the IV characteristics of the p+-n junctions and p+-Si-n-CdF2 heterojunctions reveal the CdF2 band gap (7.8 eV), as well as allow the identification of the valence-band structure of cadmium fluoride crystals. Under conditions in which forward bias is applied to the p+-Si-n-CdF2 heterojunctions, electroluminescence spectra are measured for the first time in the visible spectral region.  相似文献   

12.
Mechanism of charge transport in a diode of a silicon carbide’s Schottky barrier formed by a quasi-amorphous interstitial phase TiB x on the surface of n-6H-SiC (0001) single crystals with an uncompensated donor (nitrogen) concentration of ~1018 cm?3 and dislocation density of ~(106–108) cm?2 has been studied. It is demonstrated that, at temperatures T ? 400 K, the charge transport is governed by the tunneling current along dislocations intersecting the space charge region. At T > 400 K, the mechanism of charge transport changes to a thermionic mechanism with a barrier height of ~0.64 eV and ideality factor close to 1.3.  相似文献   

13.
The effect of a fast neutron flux (Φ = 1014–1015 cm–2) on the electrical and photoluminescence properties of p-CdZnTe single crystals is studied. Isothermal annealing is performed (T = 400–500 K), and the activation energy of the dissociation of radiation-induced defects is determined at ED ≈ 0.75 eV.  相似文献   

14.
The method of C-V characteristics has been used to study the accumulation kinetics of double and shallow hydrogen-related donors in proton-implanted epitaxial silicon. It is shown that the kinetics corresponds to the first-order reactions. The activation energies ΔE 1 = 2.3 eV and ΔE 2 = 1.4 eV and the pre-exponential factors τ01 = 9.1 × 10?17 s and τ02 = 4.2 × 10?9 s were determined for both types of the donors, respectively. It was shown that the bistability of the electric properties of silicon is due to the double hydrogen-related donor.  相似文献   

15.
Raman and infrared spectroscopy were applied to study nanocrystalline GaN films grown by chloride-hydride vapor-phase epitaxy on SiO2/Si(111) substrates at T=520°C. It was ascertained that GaN nanocrystals are formed on the oxidized silicon surface at a rate of 10?2 nm/s. It was shown that the peaks in the Raman spectra E2(high)=566 cm?1 and A1(LO)=730 cm?1 correspond to the elastically strained GaN wurtzite structure. It was detected that a peak related to E1(TO)=558 cm?1 arises in the infrared spectra, which shows that elastic stresses in the nanocrystals are insignificant.  相似文献   

16.
The process of surface texturing of single-crystal silicon oxidized under a V2O5 layer is studied. Intense silicon oxidation at the Si–V2O5 interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO2 inclusions in silicon depth up to 400 nm is formed at the V2O5–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10–15 cm2 s–1). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V2O5 through the SiO2 layer to silicon, and SiO x precipitate formation in silicon is proposed. After removing the V2O5 and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.  相似文献   

17.
The temperature and time dependences of the sintering of macroporous silicon in Ar or Ar + 3% H2 are studied. The contribution of various mechanisms governing this process is determined. The specific features of the sintering of macroporous silicon are examined by means of isochronous and isothermal annealing of the samples with ordered and random macropores in the temperature range 1000–1225°C. It is found that the sintering of macroporous silicon under atmospheric pressure in an inert gas flow containing 2 × 10–4% O2 is greatly affected by thermal etching. Thermal etching competes with the substance-transfer processes characteristic of sintering and hinders the formation of a defect-free surface crust. The reason for etching consists in that gaseous silicon monoxide is generated and then carried away by the gas flow. The etching effect is dominant in the low-temperature range and is independent of whether H2 is added. The values obtained for the activation energy of the silicon diffusion coefficient, E a = 2.57 eV, and for the exponent n = 3.31–3.74 in the time dependence of the pore radius, r ~ t 1/n are indicative of a mixed substance-transfer mechanism via the surface and volume diffusion of silicon atoms.  相似文献   

18.
The growth of Ge nanocrystals in SiO2 films is studied in relation to the dose of implanted Ge+ ions and the annealing temperature at a pressure of 12 kbar. It is established that the dependences of the nanocrystal dimensions on the content of Ge atoms and the annealing time are described by the corresponding root functions. The nanocrystal radius squared is an exponential function of the inverse temperature. The dependences correspond to the model of the diffusion-controlled mechanism of nanocrystal growth. From the temperature dependence of the nanocrystal dimensions, the diffusion coefficient of Ge in SiO2 at a pressure of 12 kbar is determined: D = 1.1 × 10–10 exp(–1.43/kT). An increase in the diffusion coefficient of Ge under pressure is attributed to the change in the activation volume of the formation and migration of point defects. Evidence in favor of the interstitial mechanism of the diffusion of Ge atoms to nanocrystal nuclei in SiO2 is reported.  相似文献   

19.
The current-voltage (I-V) characteristics of PbGa2Se4 single crystals grown by the Bridgman-Stockbarger method with a resistivity of 1010–1012 Ω cm were measured. The value of the majority carrier mobility μ=14 cm2 V?1 s?1, calculated by the differential method of analysis of I-V characteristics, makes it possible to evaluate a number of parameters: the carrier concentration at the cathode (nc0=2.48 cm?3), the width of the contact barrier dc=5.4×10?8 cm, the cathode transparency D c * =10?5–10?4 eV, and the quasi-Fermi level EF=0.38 eV. It is found that a high electric field provides the charge transport through PbGa2Se4 crystals in accordance with the Pool-Frenkel effect. The value of the dielectric constant calculated from the Frenkel factor is found to be equal to 8.4.  相似文献   

20.
We present the results of a study on localized electronic centers formed in crystals by external influences (impurity introduction and irradiation). The main aim is to determine the nature of these centers in the forbidden gap of the energy states of the crystal lattice. For the case of semiconductors, silicon (Si) was applied as model material to determine the energy levels and concentration of radiation defects for application to both doped and other materials. This method relies on solving the appropriate equation describing the variation of the charge carrier concentration as a function of temperature n(T) for silicon crystals with two different energy levels and for a large set of N 1, N 2 (concentrations of electronic centers at each level), and n values. A total of almost 500 such combinations were found. For silicon, energy level values of ε 1 = 0.22 eV and ε 2 = 0.34 eV were used for the forbidden gap (with corresponding slopes determined from experimental temperature-dependent Hall-effect measurements) and compared with photoconductivity spectra. Additionally, it was shown that, for particular correlations among N 1, N 2, and n, curve slopes of ε 1/2 = 0.11 eV, ε 2/2 = 0.17 eV, and α = 1/2(ε 1 + ε 2) = 0.28 eV also apply. Comparison between experimental results for irradiation of silicon crystals by 3.5-MeV energy electrons and Co60 γ-quanta revealed that the n(T) curve slopes do not always coincide with the actual energy levels (electronic centers).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号