首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A solution sol-gel method has been developed to prepare 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) ceramics. During the processing the gel first converted to cubic pyrochlore phase at a calcination temperature of 600°C followed by the formation of pure perovskite phase at 775°C. The ceramics sintered at 1250°C for 4 h showed ≈98% of the theoretical density. The room-temperature dielectric constant of the pellets sintered at 1250°C showed a maximum value of 25035 at 1 kHz. Sintering studies at different temperatures revealed that the dielectric constant increased with increasing grain size in these ceramics.  相似文献   

2.
The dielectric properties of (1− x )Pb(Fe2/3W1/3)O3· x PbTiO3 solid solutions were investigated from 102 to 106 Hz in the temperature range 150–600 K. The phase transition of Pb(Fe2/3W1/3)O3 (PFW) was shifted by PbTiO3 (PT) additions to higher temperatures at a rate of 6.3 K/mol% of PT. The temperature dependence of dielectric permittivity showed a sharper transition as the PT content increased. Dielectric measurements in a wide temperature range showed the presence of a second set of dielectric peaks at higher temperatures (350–600 K), besides the ferroelectric–paraelectric phase transition. This second set of peaks vanished when the samples were annealed in nitrogen. The activation energy values for the second relaxation varied between 0.50 and 0.63 eV, in agreement with the conduction activation energy determined for each sample. This relaxation is apparently related to electron holes.  相似文献   

3.
Ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN-PT) thin films were deposited on ZrO2/SiO2/silicon substrates using a chemical-solution-deposition method. Using a thin PZT film as a seed layer for the PMN-PT films, phase-pure perovskite PMN-PT could be obtained via rapid thermal annealing at 750°C for 60 s. The electrical properties of in-plane polarized thin films were characterized using interdigitated electrode arrays on the film surface. Ferroelectric hysteresis loops are observed with much larger remanent polarizations (∼24 μC/cm2) than for through-the-thickness polarized PMN-PT thin films (10–12 μC/cm2) deposited on Pt/Ti/Si substrates. For a finger spacing of 20 μm, the piezoelectric voltage sensitivity of in–plane polarized PMN-PT thin films was ∼20 times higher than that of through-the-thickness polarized PMN-PT thin films.  相似文献   

4.
A coating approach for synthesizing 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (0.9PMN–0.1PT) and PMN using a single calcination step was demonstrated. The pyrochlore phase was prevented by coating Mg(OH)2 on Nb2O5 particles. Coating of Mg(OH)2 on Nb2O5 was done by precipitating Mg(OH)2 in an aqueous Nb2O5 suspension at pH 10. The coating was confirmed using optical micrographs and zeta-potential measurements. A single calcination treatment of the Mg(OH)2-coated Nb2O5 particles mixed with appropriate amounts of PbO and PbTiO3 powders at 900°C for 2 h produced pyrochlore-free perovskite 0.9PMN–0.1PT and PMN powders. The elimination of the pyrochlore phase was attributed to the separation of PbO and Nb2O5 by the Mg(OH)2 coating. The Mg(OH)2 coating on the Nb2O5 improved the mixing of Mg(OH)2 and Nb2O5 and decreased the temperature for complete columbite conversion to ∼850°C. The pyrochlore-free perovskite 0.9PMN–0.1PT powders were sintered to 97% density at 1150°C. The sintered 0.9PMN–0.1PT ceramics exhibited a dielectric constant maximum of ∼24 660 at 45°C at a frequency of 1 kHz.  相似文献   

5.
The domain structure of ferroelectrics changes during poling has a direct influence on the macroscopic properties of the materials. The intensity variation of the different X-ray diffraction (XRD) pattern profiles was used to identify the percentage of 90° domain reorientation in the tetragonal phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) ceramics after poling. The results are consistent with the change of piezoelectric properties. In addition, by using XRD patterns, a spatial distribution of polarization in a well-poled 0.62PMN–0.38PT ceramics has been determined and was found to be best described by the Cauchy function W 00l (φ)=1/(1+0.023φ2).  相似文献   

6.
Additions of excess PbO to the perovskite Pb[(Mg1/3Nb2/3)0.92Ti0.08]O3 solid solution enhanced the formation of a liquid phase at 840°C, which served as a densification aid for the ceramics. The liquid phase allowed elimination of pores and promoted grain growth during sintering. With additions of 1 to 2 wt% excess PbO, densities in excess of 97% of theoretical were obtained at a sintering temperature of 950°C. The peak dielectric constants of the resulting ceramics were over 18 000 at 30°C and dissipation factors less than 1%. Additions of PbO in excess of 2 wt% resulted in inferior dielectric properties due mainly to the dilution of the ferroelectric phase.  相似文献   

7.
B-site cation order–disorder transition induced by mechanical activation was observed in Pb(Mg1/3Nb2/3)O3–Pb(Mg1/2W1/2)O3 (PMN–PMW) solid solution, which was examined using both XRD diffraction and Raman spectroscopic study. The order–disorder transition is composition dependent. Mechanical activation triggers the B-site disordering, which can be steadily recovered by thermal annealing at elevated temperature, i.e., at temperatures around 600°C. Raman spectroscopy demonstrated that there existed tiny ordered microdomains in 0.4PMN·0.6PMW subjected to up to 20 h of mechanical activation, although they cannot be shown by X-ray diffraction. This is a result of the equilibrium between the mechanical destruction and temperature-facilitated recovering at the collision points during mechanical activation. It is therefore unlikely that a complete disordering can be realized in PMN–PMW by mechanical activation. The disordering in PMN–PMW triggered by mechanical activation occurs simultaneously with the refinement in crystallite size at the initial stage of mechanical activation, suggesting that the fragmentation of crystallites is responsible for the order–disorder transition at least during the initial stage of mechanical activation.  相似文献   

8.
Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) thin films were prepared by spin coating using aqueous solutions of metal salts containing polyvinylpyrrolidone, where niobium oxide layers and lead—magnesium–titanium oxide layers were laminated on Pt(111)/TiO x /SiO2/Si(100) substrates and fired at 750° or 800°C. 250 ± 20 nm thick 0.7PMN–0.3PT thin films of a single-phase perovskite could be prepared, and the film fired at 750°C had dielectric constants and dielectric loss of 1900 ± 350 and 0.13 ± 0.03, respectively, exhibiting polarization-electric field hysteresis with a remanent polarization of 5.1 μC/cm2 and a coercive field of 21 kV/cm.  相似文献   

9.
Spray pyrolysis was used to synthesize lead magnesium niobate (PMN) by atomizing a mixture of nitrate aqueous solutions into a high-temperature furnace. This approach allows for instant removal of solvents and decomposition of metal–salts, thereby limiting phase segregation on a nanometer scale, and lowering the transformation temperature for pyrochlore-to-perovskite phase transition. As-synthesized particles were nanocrystalline pyrochlores, with an average crystallite size ∼22 nm. More than 96% perovskite phase was obtained when as-sprayed powders were subsequently calcined at 750°C for 4 h. Sintered PMN ceramics exhibited the typical frequency-dependent dielectric properties, with a peak value of dielectric constant of 18 000, and a transition temperature at −9.6°C at 100 Hz. A series of ceramics were prepared with varied grain sizes. Increasing the grain size increased the dielectric constant, probably due to the smaller fraction of the less-polarizable grain-boundary phases.  相似文献   

10.
Compositional variation within the Pb(Mg1/3Nb2/3) O3–PbTiO3–(Ba, Sr)TiO3 (hereafter PMN–PT–BT,ST) ternary (6.4% PT% 14.1%, 1.25% BT,ST% 2.5%) results in major changes in induced strain and hysteresis. For the 1.25% BT family, the increase in strain correlates with an increase in T max, while the dielectric loss is uncorrelated with hysteresis and strain. In addition, weak field aging (which is not reset by application of field) shows little effect on strain and hysteresis for drive fields of > 0.2 MV/m. The vary narrow polarization-fields loops (virgin curvesnearly indistinguishable from subsequent cycles) show that weak-field permittivity is a good approximation to the high-field permittivity. is a good approximation to the high-field Permittivity. Although these data clarify the frequency ( T max is linearly dependent on the logarithm of the frequency) effect on weak-field dielectric behavior, they do not directly address the question of meaningful extrapolation of high-field strain with frequency. In particular, the question remains as to whether the high-field permittivity and strain are frequency dependent. In future papers we will address this question by a combination of measurement techniques as functions of frequency.  相似文献   

11.
The doping of silver and palladium into a 0.9Pb-(Mg1/3Nb2/3)O3–0.1PbTiO3 (PMN–PT) ceramic has been investigated. It was found that Ag could be incorporated into the PMN–PT lattice, though this was almost impossible with Pd. Doping at up to 0.2 mol% of Ag and Pd reduced the maximum dielectric constant ( K max) from 21000 to 14000 without any conspicuous change in physical properties. Order–disorder transitions in the perovskite structure contributed to the decrease in K max, since the diffuseness parameter, δ, which represents the degree of the order-disorder relationship, increased with Ag doping. However, addition of more than 0.2 mol% increased K max. Increases in grain size and in the perovskite ratio contributed to this increase. The dielectric properties of Ag/Pd-doped samples were intermediate between the Ag- and Pd-doped samples.  相似文献   

12.
A method based on the use of four piezoelectric resonances for three sample geometries that allows obtaining the full set of linear electric, mechanical, and electromechanical coefficients, and all related losses of a piezoelectric ceramic has been applied to Mn-doped 0.655Pb(Mg1/3Nb2/3)O3–0.345PbTiO3 at the morphotropic phase boundary (MPB PMN–PT). Length-poled MPB PMN–PT ceramic plates presented piezoelectric shear double resonances associated with a thickness gradient of tetragonal and rhombohedral (or monoclinic) phases that originated during poling. The versatility of the method still allowed addressing these double resonances and obtaining all the linear coefficients and losses of the well-poled material. These are given for MPB PMN–PT and compared with those of a Navy type II Pb(Zr,Ti)O3 (PZT) ceramic. MPB PMN–PT presents piezoelectric coefficients as high as soft PZT but significantly lower losses, and so less overheating and hysteresis under high driving fields. Its thermal stability has been studied up to 100°C, and the temperature dependence of a number of linear coefficients and of the thickness and planar coupling factors and frequency constants of disks has been obtained. The latter thickness parameters hardly changed with temperature, while planar ones showed a relative variation of 10%.  相似文献   

13.
Lead zinc niobate–lead magnesium niobate–lead titanate (PZN–PMN–PT) ceramic powders of perovskite structure have been prepared via a mechanochemical processing route. A single-phase perovskite powder of ultrafine particles in the nanometer range was successfully synthesized when a MZN powder (columbite precursor) was mechanically activated for 10 h together with mixed lead and titanium oxides. The following steps are involved when the ternary oxide mixture is subjected to an increasing degree of mechanical activation. First, the starting materials are significantly refined in particle size as a result of the continuous deformation, fragmentation and then partially amorphized at the initial stage of mechanical activation. This is followed by the formation of perovskite nuclei and subsequent growth of these nuclei in the activated oxide matrix with increasing activation time. When calcined at various temperatures in the range of 500–800°C, pyrochlore phase was not detected by XRD phase analysis in the mechanochemically synthesized powder. Only a minor amount (∼2%) of pyrochlore phase was observed when the calcination temperature was raised to 850°C. The PZN–PMN–PT derived from the mechanochemically synthesized powder can be sintered to ∼98% relative density at a sintering temperature of 950°C. The PZN–PMN–PT sintered at 1100°C for 1 h exhibits a dielectric constant of ∼18 600 and a dielectric loss of 0.015 at the Curie temperature of 112°C when measured at a frequency of 0.1 kHz, together with a d 33 value of 323 ×10−12 pC/N.  相似文献   

14.
The pyroelectric properties of (1− x )Pb(Mg1/3Nb2/3)O3− x PbTiO3 (PMN− x PT) single crystals with various compositions and orientations have been investigated using a dynamic method. Excellent pyroelectric performances can be achieved in 〈111〉-oriented rhombohedral PMN− x PT (0.24≤ x ≤0.30) crystals, where the measurement direction corresponds to the polar axis of the crystal. At room temperature, the pyroelectric coefficient and the detectivity figure of merit ( F d ) for the 〈111〉-oriented PMN–0.28PT single crystal are 8.55 × 10−4 C·(m2·K)−1 and 9.89 × 10−5 Pa−1/2 (100 Hz), respectively, superior to those of the widely used pyroelectric materials. They are also weak temperature dependent and nearly independent of frequency. These outstanding pyroelectric performances make the single crystals a promising candidate for uncooled infrared detectors and thermal imagers.  相似文献   

15.
16.
17.
The effect of spark plasma sintering (SPS) on the densification behavior of Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics has been investigated. Specimens with a density of >99% of the theoretical density (TD) were obtained using SPS treatment at 900°C. Through normal sintering at 1200°C, however, the density of the specimen was only ∼92% of TD.  相似文献   

18.
The structure and dielectric properties of (1− x )Pb(Sc2/3W1/3)O3–( x )Pb(Zr/Ti)O3 ceramics have been investigated over a full substitution range. All compositions with x < 0.5 adopt a cubic perovskite structure; however, for x ≤ 0.25 a doubled cell results from a 1:1 ordered distribution of the B-site cations. The structural order in Pb(Sc2/3W1/3)O3 (PSW) can be described by a random-site model with one cation site occupied by Sc3+ and the other by a random distribution of (Sc1/33+W2/36+). The ordering is destabilized in solid solutions of PSW with PbZrO3 (PSW–PZ), but stabilized by PbTiO3 in the (1− x )PSW–( x )PT system. The changes in order are accompanied by alterations in the dielectric response of the two systems. For PSW–PZ the temperature of the permittivity maximum ( T ɛ,max) increases linearly with x ; however, for PSW–PT T ɛ,max decreases in the ordered region (up to x = 0.25) and then increases rapidly as the order is lost. Similar effects were produced by modifying the degree of order of (0.75)PSW–(0.25)PT; when the order parameter was reduced from ∼1.0 to ∼0.65, T ɛ,max increased by more than 60°C.  相似文献   

19.
Ceramic and electrical properties and crystal structures of the system Pb(Mgl/3Nb2/3- PbTiO3-PbZrO3 are described. The system is composed of three crystal phases at room temperature: pseudocubic, tetragonal, and rhombohedral. A high dielectric constant and radial coupling coefficient and low resonant resistance were obtained for the compositions near the morphotropic transformation. The composition Pb(Mgl/3Nb2/3)0.4375Ti0.4375Zr0.125O3 had the lowest temperature coefficient of resonant frequency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号