首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An analysis of acoustic emission(AE) from epoxy matrices of different amounts of hardener and model composites containing a glass bead, carbon and glass fibres has been carried out to identify the sources of emission. A few AE events generated by microcracking were observed for epoxy matrix near the final fracture strain. From microscopic and emission observations it was found that the emission was generated by interfacial debonding at the pole for the model composite containing a single particle of the glass bead, and that the source of AE bursts for a continuous single carbon fibre/epoxy composite was succeeding fibre fractures along fibre length. The high AE activity due to fibre fracture was observed for a composite consisting of a bundle of glass fibres. The total of AE events was in agreement with the number of fibre fracture counted with the aid of a microscope in a carbon/epoxy composite. The shear strength at the carbon/epoxy interface was evaluated by a critical length of the fractured fibres using the AE results.  相似文献   

2.
The fracture energy of a model hybrid carbon-glass-epoxy resin composite system has been evaluated at room temperature and three elevated temperatures. Values of the work of fracture increased with temperature and glass fibre content with an especially dramatic increase for the high temperature-high glass fibre content specimens. Evaluation of existing microstructural fracture energy mechanisms of fibre debonding, post-debond sliding and fibre pull-out were successful in quantitatively accounting for the work of fracture at room temperature. For the elevated-temperature tests of glass fibres in epoxy resin, it was shown that extensive frictional energy of the nature of the post-debond sliding mechanism is also dissipated after fibre failure.  相似文献   

3.
In the study of hybrid fibre cement composites containing continuous polypropylene fibres and glass fibres, it is important to know the fracture behaviour of the glass fibre strand in order to minimise the discrepancies between experiment and theory. A new technique of light transmission through the glass fibres has been developed in order to obtain independent information about the failure of individual glass filaments within a strand. The technique gave quantitative results showing that in the hybrid composite, about 80% of the glass filaments were broken somewhere in the strands before the maximum stress in the composite was reached. This was in contrast to the composite reinforced with glass fibres alone where only about 30% of the filaments were fractured before the ultimate stress. The fractures of the glass filaments in the hybrid composite were more evenly distributed than in the singly reinforced composite which enabled greater strains to be achieved in the hybrid composite at the maximum stress.  相似文献   

4.
Carbon fibre-reinforced glasses exhibit very high values of flexural strength but usually a much less controlled fracture behaviour than SiC fibre-reinforced glasses. Some carbon fibre/glass composite combinations show a well controlled fracture, others a brittle fracture behaviour. The former combinations occasionally exhibit an increase in strength after an abrupt breakdown from the maximum strength. No correlation exists between the strength of the composites and the stresses in the glass matrix due to the thermal expansion mismatch between carbon fibres and glasses in contrast to the SiC fibre composites. The reason for that is seen in the structure of the surface and mainly in the anisotropic properties of the fibres, such as the large differences in the Young's moduli and thermal expansion coefficients parallel and perpendicular to the fibre axis. In particular, no radial compressive stress on the fibres can be built up at the fibre/glass interface because the thermal expansion coefficient of the fibres in the radial direction is much larger than that of the glass matrices used. Thus, the mechanism of load transfer from the matrix to the fibres is a complicated one, and cannot easily be predicted as in the case of the isotropic SiC fibres. A possible mechanism is described in order to interpret the experimental results.  相似文献   

5.
The objective of this study was to assess the applicability of an extrinsic carbon coating to tailor the interface in a unidirectional NicalonTM–borosilicate glass composite for maximum strength. Three unidirectional NicalonTM fibre-reinforced borosilicate glass composites were fabricated with different interfaces by using (1) uncoated (2) 25 nm thick carbon-coated and (3) 140 nm thick carbon coated Nicalon fibres. The tensile behaviours of the three systems differed significantly. Damage developments during tensile loading were recorded by a replica technique. Fibre–matrix interfacial frictional stresses were measured. A shear lag model was used to quantitatively relate the interfacial properties, damage and elastic modulus. Tensile specimen design was varied to obtain desirable failure mode. Tensile strengths of NicalonTM fibres in all three types of composites were measured by the fracture mirror method. Weibull analysis of the fibre strength data was performed. Fibre strength data obtained from the fracture mirror method were compared with strength data obtained by single fibre tensile testing of as-received fibres and fibres extracted from the composites. The fibre strength data were used in various composite strength models to predict strengths. Nicalon–borosilicate glass composites with ultimate tensile strength values as high as 585 MPa were produced using extrinsic carbon coatings on the fibres. Fibre strength measurements indicated fibre strength degradation during processing. Fracture mirror analysis gave higher fibre strengths than extracted single fibre tensile testing for all three types of composites. The fibre bundle model gave reasonable composite ultimate tensile strength predictions using fracture mirror based fibre strength data. Characterization and analysis suggest that the full reinforcing potential of the fibres was not realized and the composite strength can be further increased by optimizing the fibre coating thickness and processing parameters. The use of microcrack density measurements, indentation–frictional stress measurements and shear lag modelling have been demonstrated for assessing whether the full reinforcing and toughening potential of the fibres has been realized. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
By adding glass fibres to carbon fibre composites, the apparent failure strain of the carbon fibres can be increased. A strength model for unidirectional hybrid composites was developed under very local load sharing assumptions to study this hybrid effect. Firstly, it was shown that adding more glass fibres leads to higher hybrid effects. The hybrid effect was up to 32% for a hybrid composite with a 10/90 ratio of carbon/glass fibres. The development of clusters of broken fibres helped to explain differences in the performance of these hybrid composites. For 50/50 carbon/glass hybrids, a fine bundle-by-bundle dispersion led to a slightly smaller hybrid effect than for randomly dispersed hybrids. The highest hybrid effect for a 50/50 ratio, however, was 16% and was achieved in a composite with alternating single fibre layers. The results demonstrate that thin ply hybrids may have more potential for improved mechanical properties than comingled hybrids.  相似文献   

7.
The multi-axial warp knitted fabric (MWK) is a useful reinforcement for composite. Higher mechanical performance resulted from no crimp of the fibre bundle is achieved compared with the general textile composites. For the fibre bundle of MWK, only one type of reinforcement fibre among glass, carbon fibre bundle, and so on has been selected. The mechanical properties and the cost of MWK composite depend on the feature of the fibre bundle. In order to extend the applicability of composite, the concept of “fibre hybrid composite” was applied into the MWK composite. Two kinds of fibre bundle; carbon and glass, were used in the 0/90 multi-axial warp knitted fabric. As the fibre hybrid composite; the inter-layer hybrid composite in which each layer was fabricated by carbon and glass fibre bundle respectively was investigated. Impact properties of composite were investigated by using drop weight impact tests. In case of unsaturated polyester, total energy and progressive energy of inter-layer fibre hybrid composite realized the highest value in all specimens. However, in case of epoxy resin, inter-layer hybrid composite didn’t realize the highest value in all specimens. The difference in energy absorption capability could be described with the fracture mechanism.  相似文献   

8.
This paper presents the fatigue behaviour of various fibre reinforced polymer (FRP) composites, namely, carbon, glass, polyparaphenylenl benzobisoxazole (PBO), and basalt fibres, including the effect of hybrid applications such as carbon/glass and carbon/basalt composites. A coupon test was conducted to examine the mechanical characteristics of the FRP composites subjected to monotonic and cyclic loads. Test parameters included the applied load range and different types of hybridization. Study results show that (1) the mechanical properties of the emerging PBO and basalt fibres are comparable to those of the conventional carbon and glass fibres; (2) the tensile modulus of the fibres influences the failure mode of the composite coupons; (3) the progressive damage propagation causes fatigue failure of the composites; (4) the hybrid composites of carbon/basalt significantly improves the fatigue resistance in comparison to the homogeneous basalt composite, whereas the resistance of the carbon/glass hybrid composites does not provide such effects.  相似文献   

9.
The Boundary Element Method (BEM) incorporating the Embedded Cell Approach (ECA) has been used to analyse the effects of constituent material properties, fibre spatial distribution and microcrack damage on the localised behaviour of transversely fractured, unidirectional fibre-reinforced composites. Three specific composites, i.e., glass fibre reinforced polyester, carbon fibre reinforced epoxy and a glass-carbon hybrid, are considered. The geometrical structures examined were perfectly periodic, uniformly spaced fibre arrangements in square and hexagonal embedded cells. In addition, numerical simulations were also conducted using embedded cells containing randomly distributed fibres. The models involve both elastic fibres and matrix, with the interfaces between the different phases being fully bonded. The results indicate that the constituent material properties (two phase composite) and spatial distribution have a significant effect on the localised stress distributions around the primary crack tip. However, the strain energy release rate associated with crack propagation is predominantly influenced by the material composition. The three-phase hybrid composite exhibited an apparent intermediate fracture toughness value, compared to the all-glass and all-carbon models. Furthermore, the strain energy release rate for the macrocrack lowers as it enters a zone of localised damage (microcracking). The presence of microcracks relaxes the stress field, which can result in a significant reduction in the energetics of the primary crack.  相似文献   

10.
Temperature changes in polymer composites during tensile loading   总被引:1,自引:0,他引:1  
Temperature changes in polymeric composite laminates subjected to uniaxial monotonic tensile loading were studied. The laminates were transverse and longitudinal unidirectional glass fibre-epoxy and carbon fibre-epoxy laminates, and hybrid crossply laminates with longitudinal glass fibre-epoxy and transverse carbon fibre-epoxy layers. The temperature decreased linearly with increased tensile stress in the elastic region, except for longitudinal carbon fibre specimens (where the fibres have a small but negative coefficient of thermal expansion), which exhibited a small temperature increase. The occurrence of non-linear stress-strain behaviour in transverse carbon fibre specimens altered the rate of temperature change. When cracks appeared in laminates, the temperature immediately started to rise. The temperature changes in crossply laminates were interpreted from measurements on unidirectional specimens and knowledge of the damage mechanisms. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
This paper presents the results of an investigation into the effects of hollow glass microsphere fillers and of the addition of short fibre reinforcements on the mechanical behaviour of epoxy binding matrix composites. Properties like flexural stiffness, compressive strength, fracture toughness and absorbed impact energy, were studied. The specimens were cut from plates produced by vacuum resin transfer moulding having a microsphere contents of up to 50% and with fibre reinforcement up to 1.2% by volume. The tests performed with unreinforced composites show that flexural and compressive stiffness, maximum compressive stresses, fracture toughness and impact absorbed energy decrease significantly with increasing filler content. However, in terms of specific values, both flexural and compressive stiffness and impact absorbed energy increase with microsphere content. The addition of glass fibre produces only a slight improvement in the flexure stiffness and fracture toughness, while increasing significantly the absorbed impact energy. In contrast, the addition of a small percentage of carbon fibres produces an important improvement in both fracture toughness and flexure stiffness, when hybrid composites with 0.9% carbon fibre are compared to unreinforced foam, but did not improved absorbed impact energy.  相似文献   

12.
A theoretical analysis based on the assumed form of the strain field surrounding a crack bridged by reinforcing elements has been used to examine the growth of a crack propagating transversely to the fibres in hybrid fibre composites. An intermingled carbon fibre/glass fibre polymer matrix system has been considered. Two situations have been investigated. In the first of these the effect of the addition of carbon fibres on the development of cracks resulting from the failure of the glass fibres by stress corrosion has been studied. The analysis indicates that crack growth can be severely inhibited by a 5% volume fraction of type III carbon fibres. The analysis has been used also to investigate the process by which strong high failing strain glass fibres inhibit the growth of cracks caused by the fracture of localized clusters of low failing strain carbon fibres. The predictions of this analysis agree with existing experimental data on glass fibre/carbon fibre hybrids.  相似文献   

13.
To investigate enhancement of matrix-dominated properties (such as interlaminar fracture toughness) of a composite laminate, two different bead-filled epoxies were used as matrices for the bead-filled epoxy/glass fibre hybrid composites. The plane strain fracture toughness of two different bead-filled epoxies have been measured using compact tension specimens. Significant increases in toughness were observed. Based on these results the interlaminar fracture toughness and fracture behaviour of hybrid composites, fabricated using bead-filled epoxy matrices, have been investigated using double cantilever beam and end notch flexure specimens for Mode I and Mode II tests, respectively. The hybrid composites based on carbon bead-filled matrix shows an increase in both G IC initiation and G IIC values as compared to a glass fibre reinforced plastic laminate with unmodified epoxy matrix. The optimum bead volume fraction for the hybrid composite is between 15% and 20%. However, the unmodified epoxy glass-fibre composite shows a higher G IC propagation value than that of hybrid composites, due to fibre bridging, which is less pronounced in the hybrids as the presence of the beads results in a matrix-rich interply region.  相似文献   

14.
The bending strength, stiffness and energy absorption of corrugated sandwich composite structure were investigated to explore novel designs of lightweight load-bearing structures that are capable of energy absorption in transportation vehicles. Key design parameters that were considered include fibre type, corrugation angle, core-sheet thickness, bond length between core and face-sheets, and foam inserts. The results revealed that the hybridization of glass fibres and carbon fibres (50:50) in face-sheets was able to achieve the equivalent specific bending strength as the facet-sheets made entirely of carbon fibre composites. Increasing the corrugation angle and the core sheet thickness improved the specific bending strength of the sandwich structure, while increasing the bond length led to a reduction in the specific bending strength. The hybrid composite coupons with foam insertion showed medium energy absorption, ranging between the glass fibre and the carbon fibre composite coupons, but the highest crush force efficiency among all designs.  相似文献   

15.
This article presents the results of a current study concerning the influence of the addition of short fibres on the fatigue behaviour of syntactic foams. The material was obtained by vacuum-assisted resin transfer moulding adding hollow glass microspheres to an epoxy resin acting as binding matrix. Specimens with microsphere contents up to 50% and fibre reinforcement up to 1.2% in volume were tested at three-point bending at room temperature. Foams show significantly lower static and fatigue strength than an epoxy matrix. A significant decrease in the absolute strength with filler increase was observed, and even specific strength decreases for low filler contents and is nearly constant for the higher filler contents. Fatigue strength also decreases with the increase in filler content. The addition of glass fibre reinforcement produces only a slight improvement in flexure strength, while the addition of carbon fibres promotes an important improvement; a hybrid composite containing 0.9% carbon fibre is about 30% stronger than unreinforced foams. An improvement in fatigue strength more than 30% was obtained by the addition of small percentages of glass or carbon fibre.  相似文献   

16.
Carbon/carbon composites are a type of material, which combines the refractory properties of carbon with the high strength and stiffness of carbon fibres. Although one could not expect a reinforcement by the combination of a carbon matrix with carbon fibres the fibre properties can be used. Additionally the material shows a pseudoplastic fracture behaviour in spite of its ceramic nature. Explanations for this inverse behaviour in comparison to other composite structures will be presented including mechanical viewpoints, interactions at the interface between fibre and matrix, their influence to the fracture characteristics and micromechanical behaviour as well as the interactions between modulus and microstructure. Furtheron examples for some industrial applications are described.  相似文献   

17.
In this paper the elastic-plastic model of flexural behaviour of beams is applied to hybrid composites containing aramid fibres. In the hybrids, as in the parent aramid-fibre-reinforced composite, the neutral axis is shifted toward the tensile face. The shift depends on the quantity and placement of the aramid fibre. The analysis and experimental work reported here relate to two fundamental sandwich hybrids, one with aramid fibres in the skins and carbon or glass fibres in the core, and the other with aramid fibre in the core and carbon or glass fibres in the skins. The flexural behaviour of the hybrids is discussed in terms of the effect of the placement of the aramid layer and of the relative thickness of the skin on the ultimate stresses, the elastic-plastic behaviour and the mode of failure.  相似文献   

18.
The nucleation and crystallization of nylon at the interface in glass-fibre and carbon-fibre reinforced nylon 6 composites has been investigated by electron microscope studies of sectioned and etched bulk specimens and solution cast and melt crystallized thin films. The fracture energies of the composites were obtained from tensile strength tests and the interfacial bond strengths were calculated from fibre pullout measurements. The fibres are shown to nucleate a columnar structure at the interface with marked differences between the structures nucleated by glass fibres and by carbon fibres and also between that nucleated by type I and type II carbon fibres. The structure around glass fibres was non-uniform and influenced to some extent by the presence of the size coating on the fibre surface. In the carbon-fibre composites the columnar structure was due primarily to physical matching of the graphite crystallites. Surface treatment of the carbon fibres to improve chemical bonding is shown to have a significant effect on bond strength which cannot be explained in terms of the columnar structure at the fibre surface. The treated fibres gave rise to only small amounts of fibre pull-out and low fracture energies whereas the untreated fibres showed extensive pull-out which was reflected in high fracture energies.  相似文献   

19.
Toughening mechanisms in a hybrid amorphous thermoplastic composite containing both distributed rubber particles and rigid glass fibres have been investigated. Tensile properties were measured for a range of materials with varying rubber particle and glass-fibre contents, and different rubber particle sizes. Fracture toughness was characterized by separating the overall fracture into its initiation and propagation components. Deformation and fracture modes at crack tips were optically characterizedin situ during loading. The results indicate that both initiation and propagation toughness are enhanced by rubber particle additions to the glass-fibre reinforced composite. Synergistic effects between glass fibres and rubber particles are identified: for example, glass fibres inhibit crazing at rubber particles, and rubber particles tend to promote crazing at fibre/matrix interfaces and also void initiation at fibre ends. Toughening mechanisms are discussed in the light of available models.  相似文献   

20.
The dry abrasive-dominant wear behaviour of several composite materials consisting of uni-directional continuous fibres and polymer matrices was investigated. Seven materials were examined: neat epoxy (3501-6), carbon fibre epoxy (AS4/3501-6), glass fibre/epoxy (E-glass/ 3501-6), aramid fibre/epoxy (K49/3501-6), neat polyetheretherketone (PEEK), carbon fibre/PEEK (APC2) and aramid fibre/PEEK (K49/PEEK). The wear behaviour of the materials was characterized by experimentally determining the friction coefficients and wear rates with a pin on-flat test apparatus. First, the effects of the operation variables apparent normal pressure, sliding velocity and apparent contact area were observed. The dimensionless wear rate increased linearly as the apparent normal pressure increased and decreased as the apparent contact area increased. Second, through microscopic observations of the worn surfaces and subsurface regions, basic wear mechanisms were identified as a function of fibre orientation. Observations of fibre-abrasive particle interactions allowed for the differentiation of the dominating wear mechanisms. Finally, a network of data was compiled on the wear behaviour in terms of the three material parameters: fibre orientation, fibre material and matrix material. This enabled the systematic selection of an ideal low wear composite material which would consist of a PEEK matrix reinforced with aramid fibres oriented normal to the contacting surface and carbon fibres oriented parallel to the contacting surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号