首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为获得纵向拉伸性能优异的静电纺丝锂离子电池隔膜,首先在不同转速条件下制备聚丙烯腈(PAN)纤维膜,分析得出在700 r/min 时,PAN 纤维排列取向性最好。然后将在700 r/min 条件下制备得到的PAN 增强层纤维膜作为中间层,结合上下2 层杂乱分布的聚酯(PET)纤维膜形成取向增强复合隔膜,在低速(100 r/min)条件下制备了PET/PAN/PET 各向同性纤维膜作为对比膜。表征了2 种隔膜的物理力学性能及电化学性能。结果表明:取向增强复合隔膜的吸液率为371%,热收缩率为4.1%,室温下离子电导率为0.553 ms/cm,电化学稳定窗口为5.27 V;由其制备的电池首次放电比容量为138.0 mA?h/g;纵向拉伸断裂强度为9.2 KPa,比对比膜提高了130%,该取向增强复合隔膜机械强度显著提高,综合性能优于PET/PAN/PET 各向同性纤维膜。  相似文献   

2.
为获得性能较好的锂离子电池隔膜,首先制备了单层静电纺聚偏氟乙烯六氟丙烯(P(VDF-HFP))纳米纤维,然后利用静电喷雾技术将Al2O3和ZrO2颗粒分散液均匀喷洒在其表面,再接收一层静电纺P(VDF-HFP)纳米纤维,制备出具有3层结构的有机/无机复合锂离子电池隔膜。同时制备了单层静电纺P(VDF-HFP)纳米纤维膜作为对比膜。考察了复合膜和对比膜的表面形貌、透气性、吸液率和热稳定性等物理性能,以及室温离子电导率、电化学稳定性和电池的循环充放电性能等电化学性能。结果表明:该复合膜的Gurley值为0.117S/(100mL?cm²),热收缩率为2.25%,吸液率为420%;室温下离子电导率为2.31mS/cm,电化学稳定窗口为5.4V,所制备电池首次放电比容量为138.6mA?h/g;在中间层添加纳米颗粒后,复合膜的透气性下降而其他指标均获得提升,综合性能优于相同条件下制备的单层静电纺隔膜  相似文献   

3.
以玻璃纤维机织物为中间层,聚偏氟乙烯-六氟丙烯(PVDF-HFP)微孔膜为上下层,制备三明治结构的锂离子电池复合隔膜,对其干态与湿态下的力学性能、电解液亲和性、热稳定性及电化学性能等进行测试,并与商品化锂离子电池隔膜Celgard 2400进行对比。结果表明,三明治结构的锂离子电池复合隔膜具有更好的力学性能、电解液亲和性、热稳定性及电化学性能。  相似文献   

4.
为了获得性能优异的纳米纤维隔膜,提高锂离子电池的电化学稳定性能以及安全性能,结合PVDF较优异的机械性能和PMMA较高的离子电导率优点,以一维纳米技术和层层制备方式,纺制PVDF/PMMA/PVDF层合纳米纤维隔膜。通过对隔膜孔隙率、力学性能、热稳定性、电化学性能等性能分析,探究层合结构对隔膜性能的影响。结果表明得到的层合纳米纤维隔膜具有较高的孔隙率为74.6%,较好的热稳定性,在140℃下能基本保持尺寸稳定,以及较好的充放电性能和循环性能,充电比容量可达158.2 mAh/g,容量保持率达105%,对产品的开发应用具有重要意义。  相似文献   

5.
为解决现有隔膜材料孔隙率较低、耐热性差等缺点,以耐热性较好的聚丙烯腈(PAN)为原料,制备出具有较高孔隙率和热稳定性的PAN纳米纤维隔膜。研制中采用静电纺多针头和滚筒接收方法,有效地提高了生产效率及产品质量均匀性。并探究了PAN纤维膜的结构形态、力学性能、孔隙率和热稳定性,以及组装后锂离子电池的充放电性能、循环性能和交流阻抗(EIS)性能。结果表明,静电纺PAN纳米纤维膜具有良好的热稳定性、较高的孔隙率和电化学性能等优势。  相似文献   

6.
针对Si材料储能过程中体积膨胀的问题,首先采用静电纺丝技术制备聚丙烯腈(PAN)/Si /Fe复合纳米纤维(NFs)膜,然后经化学气相沉积法在复合NFs膜上生长碳纳米管(CNTs),最后经800 ℃炭化得到PAN基Si/C/CNTs复合碳纳米纤维(CNFs)膜。借助扫描电子显微镜、透射电子显微镜、X射线衍射仪、热重分析仪等表征复合CNFs膜的结构与性能,并将其用于锂离子电池负极进行电化学性能测试。结果表明:用添加质量分数为15% 的FeSO4(占PAN)催化剂的纺丝液制备的复合CNFs膜具有独特毛毛虫结构,其可有效提升电池的电化学性能,具有2 067.9 mA·h/g的初始放电比容量,循环400圈后仍具有851.2 mA·h/g 的放电比容量,每圈的容量衰减率仅为 0.15%。  相似文献   

7.
为解决商业聚丙烯(PP)隔膜横向拉伸断裂强度不高的问题,文章利用静电纺丝在不同转速收集条件下制备聚丙烯腈/聚氨酯(PAN/TPU)取向纤维膜作为PP隔膜的外夹层,制备了(PAN/TPU)-PP-(PAN/TPU)三明治结构隔膜。性能测试结果表明:取向度越高,拉伸强度越高;600、900r/min转速下收集的取向隔膜在2C下具有较高的首次放电比容量,但过度取向的900、1 200 r/min隔膜在大倍率下长时间循环,容量衰减明显。因此认为用适度取向的电纺丝纤维增强PP隔膜才可同时提高拉伸强度和电化学性能。  相似文献   

8.
为克服现有隔膜材料孔隙率低、耐热性能差的缺点,采用静电纺丝技术,以耐高温性能较好的聚丙烯腈(PAN)和力学性能较好的聚偏氟乙烯(PVDF)为原料,通过多针头、滚筒接收装置成功制备了具有较高孔隙率和热稳定性等优点的PAN/PVDF/PAN 层合纳米纤维隔膜材料,并对得到的3 种不同厚度比的纳米纤维复合膜结构与性能进行了测试,探究了聚丙烯腈和聚偏氟乙烯不同厚度比例对纳米纤维膜性能的影响,同时对材料的过温保护功能进行了分析。结果表明,制备的复合纳米纤维隔膜具有75.42% 的孔隙率,在160 ℃内能保持尺寸稳定,并且超过160 ℃具有过温保护功能。  相似文献   

9.
将纳米锡(Sn)与聚丙烯腈(PAN)共混,采用静电纺丝法制备Sn/PAN纳米纤维膜并进行炭化处理。使用扫描电子显微镜、透射电子显微镜和X射线衍射法对纤维平均直径、直径分布、Sn在纤维上的存在情况以及Sn加入到PAN中静电纺丝后的结晶程度进行表征,将炭化后的纤维膜直接制成锂离子电池负极,测试其电化学性能。结果表明:随着纺丝电压升高或固化距离增大,纤维直径减小;当静电纺丝电压为14 kV,固化距离为14 cm时,纤维平均直径较小,分布最均匀;炭化后纤维变细;Sn加入到PAN中静电纺丝后发生团聚,结晶程度明显下降;Sn/PAN作为锂离子电池负极材料,具有良好的储能性能。  相似文献   

10.
本研究以纳米纤维素(CNF)为原料,经乙酰化、原位负载ZIF-67和浸渍电解液制备出一种新型ZIF-67@乙酰化纳米纤维素(ZIF-67@ACNF)锂离子电池隔膜,系统探讨了ZIF-67的粒径对隔膜结构及性能的影响。结果表明,当ZIF-67的粒径从0.46 μm(ZIF-674@ACNF隔膜)减小至0.25 μm(ZIF-678@ACNF隔膜)时,隔膜的孔隙率从74.2%减小至52.1%,离子电导率从0.75 mS/cm下降至0.22 mS/cm,界面电阻从112.5 Ω增加至1 115.7 Ω,锂离子迁移数从0.41减小至0.31,电化学稳定窗口从5.1 V减小至4.5 V。采用ZIF-674@ACNF隔膜组装电池,在室温、0.5 C的条件下进行电池充/放电测试,初始容量达到159.6 mAh/g,循环200圈后容量保持率达到90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号