首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
报道了320×256元AlxGa1-xN日盲型紫外探测器及其焦平面阵列探测器的研制情况,介绍了材料生长、器件制备工艺和器件的光电特性.器件的开启电压大于3.5 V,-0.5 V偏压时暗电流小于1.2×10-12A(φ=300 μm台面),光谱响应范围260~280 nm,268 nm峰值波长的响应度大于0.095 A/W.器件实现了日盲紫外成像演示.  相似文献   

2.
吸收层与倍增层分离的4H-SiC雪崩光电探测器   总被引:1,自引:0,他引:1  
设计和制备了吸收层和倍增层分开的4H-SiC穿通型雪崩紫外光电探测器.设计器件的倍增层和吸收层厚度分别为0.25和1μm.采用multiple junction termination extension(MJTE)方法减少器件的电流集边效应和器件表面电场.对器件的暗电流、光电流和光谱响应进行了测量.器件在55V的低击穿电压下获得了一个高的增益(>104);穿通前器件暗电流约为10pA数量级;0V偏压下器件光谱响应的紫外可见比大于103.光谱响应的峰值波长随反向偏压的增大而向短波方向移动,在击穿电压附近光谱响应的峰值波长移到210nm,此波长远远小于在0V时的响应峰值.结果显示器件在紫外光探测中具有优良的性能.  相似文献   

3.
吸收层与倍增层分离的4H-SiC雪崩光电探测器   总被引:2,自引:0,他引:2  
设计和制备了吸收层和倍增层分开的4H-SiC穿通型雪崩紫外光电探测器.设计器件的倍增层和吸收层厚度分别为0.25和1μm.采用multiple junction termination extension(MJTE)方法减少器件的电流集边效应和器件表面电场.对器件的暗电流、光电流和光谱响应进行了测量.器件在55V的低击穿电压下获得了一个高的增益(>104);穿通前器件暗电流约为10pA数量级;0V偏压下器件光谱响应的紫外可见比大于103.光谱响应的峰值波长随反向偏压的增大而向短波方向移动,在击穿电压附近光谱响应的峰值波长移到210nm,此波长远远小于在0V时的响应峰值.结果显示器件在紫外光探测中具有优良的性能.  相似文献   

4.
n-ZnO/p-Si异质结UV增强型光电探测器的研究   总被引:10,自引:2,他引:8  
采用平面工艺,在p+-Si背底上电子束蒸发Al制作欧姆电极,在p-Si外延层上溅射掺Al的 ZnO薄膜,再蒸发Al作有源区欧姆电极,研制成n-ZnO/p-Si异质结UV(ultraviolet)增强型光电探测器。测试结果表明:器件明显增强了200~400 nm紫外光的响应,同时保持了传统的Si探测器对波长大于400 nm波段的光谱响应,在330,420,468、525 nm附近有四个明显的光谱峰值响应。器件光致发光谱(PL)在371 nm处有发光峰值。  相似文献   

5.
报道了p-GaN/Al0.35Ga0.65N/GaN应变量子阱结构的肖特基紫外探测器的制备及性能.器件的测试结果表明,在p-GaN/Al0.35Ga0.65N/GaN双异质结中强烈的压电极化和Stark效应共同作用下使得器件在正偏和反偏时的响应光谱都向短波方向移动了10nm.零偏下器件在280nm时的峰值响应为0.022A/W,在反向偏压为1V时,峰值响应增加到0.19A/W,接近理论值.在正向偏压下器件则呈平带状态,并在283和355nm处分别出现了两个小峰.在考虑极化的情况下,通过器件中载流子浓度分布的变化解释了器件在不同偏压下的响应特性,发现p-GaN/Al0.35Ga0.65N/GaN中的极化效应对器件的响应特性影响很大,通过改变偏压和适当的优化设计可以使探测器在紫外波段进行选择性吸收.  相似文献   

6.
报道了p-GaN/Al0.35Ga0.65N/GaN应变量子阱结构的肖特基紫外探测器的制备及性能.器件的测试结果表明,在p-GaN/Al0.35Ga0.65N/GaN双异质结中强烈的压电极化和Stark效应共同作用下使得器件在正偏和反偏时的响应光谱都向短波方向移动了10nm.零偏下器件在280nm时的峰值响应为0.022A/W,在反向偏压为1V时,峰值响应增加到0.19A/W,接近理论值.在正向偏压下器件则呈平带状态,并在283和355nm处分别出现了两个小峰.在考虑极化的情况下,通过器件中载流子浓度分布的变化解释了器件在不同偏压下的响应特性,发现p-GaN/Al0.35Ga0.65N/GaN中的极化效应对器件的响应特性影响很大,通过改变偏压和适当的优化设计可以使探测器在紫外波段进行选择性吸收.  相似文献   

7.
黄然  李筠  刘猛  李晓兰 《激光杂志》2009,30(5):18-19
由于紫外光对硅层的透射深度小于2nm,所以传统的光电探测器件并不响应紫外光。为了增强传统的光电探测器件在紫外波段的探测能力,实用的方法是在传感器光敏面镀上“紫外一可见”变频薄膜,将紫外光转化为可见光。实验用“旋涂法”在石英基底上生成ZnzSiO4:Mn紫外探测薄膜,并对其透射光谱、吸收光谱、激发光谱与发射光谱等光学性质进行测量分析。实验测得薄膜在300nm以下透过率极低,在300nhm以上透过率很高且平稳;对300nm以下的光具有很强的吸收,对300nm以上的光吸收很弱且很平稳;激发峰在265nm,发射峰在525nm,即能将紫外光转化为可见光。实验结果表明薄膜不仅能将紫外光转化为可见光,实现传统光电探测器件的紫外探测。而且在增强紫外响应的同时不削减其他波段的响应,是一种适用于增强光电图像传感器紫外响应的紫外增强薄膜。  相似文献   

8.
在蓝宝石衬底上用MOCVD生长的材料制备了背入射Al0.42Ga0.58N/Al0.5Ga0.5N P-I-N型64元线列焦平面太阳光盲紫外探测器。测试了器件的光谱响应,其截止波长为285nm,在275nm峰值波长处的零偏电流响应率为20mA/W。测试了线列器件各元在5V反偏压下的暗电流,结果表明暗电流大约在10-8A数量级,暗电流分布均匀。线列器件各元的紫外光响应均匀性较好。  相似文献   

9.
制备了4种具有不同光窗口台面结构的4H-SiC紫外探测器#1,#2,#3和#4,并分别测试它们的紫外光响应谱.器件制备在4H-SiC同质外延层上,台面为垂直结构,其中探测器#1光窗口区由透明Pt层、p 层、p层、n层和n 衬底组成.在探测器#1的基础上用离子刻蚀的方法分别剥离透明Pt层、透明Pt层和p 层、透明Pt层和层以及p层制备出探测器#2,#3和#4.器件的紫外光响应谱表明,紫外响应率最好的是探测器#2,其次是探测器#4,#1,#3,其中探测器#2比其他类型的探测器响应率高1个数量级;4种类型的探测器峰值响应位置各不相同,其中探测器#1位于341nm处,探测器#2,#3和#4分别在312,305和297nm处.  相似文献   

10.
制备了4种具有不同光窗口台面结构的4H-SiC紫外探测器#1,#2,#3和#4,并分别测试它们的紫外光响应谱.器件制备在4H-SiC同质外延层上,台面为垂直结构,其中探测器#1光窗口区由透明Pt层、p+层、p层、n层和n+衬底组成.在探测器#1的基础上用离子刻蚀的方法分别剥离透明Pt层、透明Pt层和p+层、透明Pt层和层以及p层制备出探测器#2,#3和#4.器件的紫外光响应谱表明,紫外响应率最好的是探测器#2,其次是探测器#4,#1,#3,其中探测器#2比其他类型的探测器响应率高1个数量级;4种类型的探测器峰值响应位置各不相同,其中探测器#1位于341nm处,探测器#2,#3和#4分别在312,305和297nm处.  相似文献   

11.
黄莉敏  谢家纯  梁锦 《半导体学报》2005,26(13):256-260
用宽禁带半导体n-4H-SiC和金属Au作肖特基接触,Ti, Ni, Ag合金作背底形成欧姆接触,研制出Au/n-4H-SiC肖特基紫外探测器. 测试分析了器件在高温高压下的光谱响应特性,响应范围在200~400nm之间,室温无偏压下,响应峰值在320nm,响应半宽为82nm. 在高反压下(100V以上)探测器的光谱响应曲线出现了锐上升和锐截止,在260~380nm之间有非常平稳的光谱响应;在高温533K无偏压下,紫外响应特性仍然保持良好.  相似文献   

12.
Deep ultraviolet light-emitting diode structures with a peak wavelength of 275 nm, as well as individual AlGaN:Mg layers, were grown by metalorganic chemical vapor deposition on (0001) silicon carbide. Control of the Mg profile in the devices reduced unwanted Mg-related emission at 320 nm to 1/224th of that emitted at the peak wavelength. An additional peak at 410 nm was observed to be related to oxygen incorporation in the film and confirmed with secondary ion mass spectroscopy (SIMS). Also investigated in an effort to improve hole injection were aluminum content, layer thickness, V/III ratio, activation temperature, and properties of the GaN:Mg contact layer and transparent contact metal stack. By optimizing this and other layers of the device, output powers of 0.84 mW at 1.3 A were obtained from packaged devices, with forward voltages as low as 4.9 V at 20 mA.  相似文献   

13.
High-gain phototransistors with narrow spectral response (wavelength-selective phototransistors) have been developed by adding an absorption layer to a wide-bandgap heterojunction phototransistor using the InGaAsP/InP material system. The spectral response peaks at approximately 1.2 µm and the spectral half-width of 53 nm is achieved. This device exhibited an optical gain as high as 400 at the peak wavelength under an incident light power Pinof 3.6 µW. The rise time was measured to be 18 µs at Pin= 10 µW. The noise characteristic was also measured for this device, and the resultant detectivity D*was estimated to be 3.7 × 1010cm . Hz1/2/W at a frequency of 2 kHz under an optical bias level of 0.1 µW. These characteristics have been theoretically discussed in detail.  相似文献   

14.
We report on the design and development of a wavelength monitor for use with tunable semiconductor lasers. The device is based on two-mode interference in an asymmetrically excited waveguide that is coupled to a Y-branch splitter. The monitoring range of the device is 30 nm. The wavelength monitor is capable of operating over an input power range of 34 dB, and the waveguide detectors do not saturate at photocurrents as high as 1.2 mA. The sensitivity of the monitor is only 1.24 nm for an isolated device, but improves to 0.44 nm when it is integrated on chip with the laser  相似文献   

15.
采用微电子平面工艺,高真空电子束蒸发金属Au做肖特基接触,多层金属Ni、Ti、Ag合金在背底上做欧姆接触,制作出Au/n-4H-SiC肖特基势垒紫外光电二极管(UV-SBD).测试并分析了在不同温度下该器件的I-V特性及光谱响应特性.实验表明:器件高温下有较低的反向漏电流,正向开启电压下降速度为-1.2 mV/℃;波长响应范围为200~400 nm,在23℃和260℃时,光谱响应峰值分别出现在320 nm和330 nm,每100℃波长红移约4 nm;响应灵敏度随温度升高而降低,平均每100℃降低2倍.  相似文献   

16.
CdS紫外探测器的研究   总被引:2,自引:0,他引:2  
针对制导等应用领域对紫外探测器的需求,介绍了一种CdS半导体紫外探测器研制过程及取得的进展,叙述了器件的工作原理和制作工艺,并针对器件的响应率及量子效率等性能进行了测试,测试结果表明,该器件在探测波长410 nm的光线时,量子效率最高达到了44.5%。  相似文献   

17.
4H-SiC金属-半导体-金属结构紫外探测器的模拟与分析   总被引:3,自引:0,他引:3  
用MEDICI软件对金属-半导体-金属(MSM)结构4H-SiC紫外(UV)探测器的I-V特性以及光谱响应等特性进行了模拟与分析,并探讨了金属电极的宽度、电极间距以及外延层厚度对探测器响应度的影响.结果表明,室温下该探测器的暗电流线性密度达到10-13A/μm,且在不同电压下光电流至少比暗电流大两个数量级;探测器的光谱响应范围为200~400 nm,在347 nm处响应度达到极大值;增大指宽或者减小指间距可以提高探测器的响应度;当波长小于峰值波长时外延层厚度对探测器的响应度基本没影响,而当波长大于峰值波长时随着外延层厚度的增大探测器的响应度有所增大.  相似文献   

18.
Experimental studies on a silicon photodiode have been carried out to achieve the performance characteristics required for applications such as spectroscopic measurements. Sheet resistance was applied as a control parameter for diffusion to obtain a shallow junction less than 1 µm in depth. For high ultraviolet responsivity, the diffusion layer, in which a built-in field is induced by the impurity gradient, was optimized for values of the sheet resistance of about 800-2000 Ω/□. The device responded in the wavelength range of 200-1000 nm,and had a responsivity of 0.065 A/W at 200 nm. In order to reduce influence of stray light in spectroscopic measurements, two types of photodiodes were fabricated with photoresponse reduced in the long-wavelength portion. A p+-n-p+device was found preferable to a p+-n-n+device. And the device structure with an extended electrode was desirable for high, reliable performance.  相似文献   

19.
A novel integrated reflector concept for use in widely tunable semiconductor lasers is introduced. Two concatenated Fabry–PÉrot cavities with low partial reflections and different cavity lengths are interleaved to realize a wavelength-selective reflective element. Differential current injection in the interleaved cavities is used to tune the reflection peak. The reflector is integrated in an all-active multisection device. The laser tunes across 37 wavelength channels on a 100-GHz grid over a wavelength span of 30 nm. The linewidth of each mode is ${≪}$ 7 MHz while the power deviation is ${≪}$6 dB.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号