首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从研究影响轮轨滚动接触几何关系的机制出发,利用数值计算方法分析横移量和摇头角变化速率对轮轨接触质点间蠕滑力/率、接触斑黏滑区的分布等的影响。分析结果表明:横移量、摇头角的变化速率对轮轨滚动接触蠕滑特性具有重要的影响具有重要的影响;随着横移量变化速率的增加,轮轨接触斑间的横向蠕滑力/率、蠕滑力密度等增大,同时滑动区逐渐增大,黏着区面积逐渐减小,因此当列车在加速过程中要适当考虑增黏措施;随着摇头角的变化速率的增大,轮轨接触斑间的纵向蠕滑力/率、蠕滑力密度等增大,而横向蠕滑力/率、蠕滑力密度等减小,接触斑上滑移区面积逐渐增大,直至接触斑切向力达到饱和处于全滑动状态。  相似文献   

2.
基于非Hertz滚动接触理论利用数值计算方法详细分析了静态接触情况下,横移量和摇头角对轮轨接触质点间蠕滑力、接触斑粘滑区的分布、等效应力的影响.通过数值计算表明:横移量、摇头角的变化对轮轨滚动接触行为的影响是同时存在并且相互影响的.随着横移量的增加,接触斑的滑动区逐渐增大,粘着区面积逐渐减小,横向移动分量逐渐增大,最大应力值逐渐减小;随着摇头角的增大,接触斑上滑移区面积和最大剪应力和等效应力值均逐渐增大,直至接触斑处于全滑动状态,当轮轨接触斑上的切向力达到饱和时,摇头角对接轮轨接触斑上的蠕滑力、粘滑区分布和应力分布没有影响,计算结果对研究轮轨滚动接触疲劳提供一定的参考价值.  相似文献   

3.
轮轨磨耗问题影响列车运行的平稳及安全。为研究钢轨磨耗规律,基于轮轨接触的有限元计算模型,分析不同牵引或制动力及横移量等对轮轨接触的影响规律,提出有限元摩擦功计算方法,对地铁钢轨进行磨耗量及磨耗后型面预测,并探究车轮的通过次数对钢轨磨耗的影响。研究结果表明,根据功的物理意义,接触斑节点的摩擦功与摩擦力及相对位移直接相关;牵引或制动力及不同横移量作用下,轮轨接触斑的摩擦功均呈中部小、后部及两侧大的分布规律,这与接触斑上黏着区与蠕滑区的分布规律对应;在接触区间内,钢轨的累积磨耗量沿横向呈中间高两侧低的分布规律,磨耗深度随车轮通过次数的增加近似呈正比增加;运用摩擦功计算方法预测的钢轨磨耗量与实测结果基本相符,与标准型面数据的预测结果相比,采用磨耗后型面的有限元计算结果预测的钢轨累积磨耗量,与实测型面更加接近。  相似文献   

4.
温泽峰  金学松 《机械强度》2002,24(3):383-387
从数值方面详细分析轮轨结构横向弹性变形对轮轨蠕滑力的影响。借助于有限元方法分析计算轮对和轨道结构横向弹性变形与横向作用力的关系,确定轮轨接触斑处横向单位作用力引起轮轨横向变形的影响系数。用这些影响系数修正Kalker非赫兹滚动接触理论中无限弹性半空间上单位力的影响系数,并分别用没有修正的和修正了的Kalker三维弹性体非赫兹滚动接触理论分析计算轮轨滚动接触蠕滑力。从数值结果看,轮轨的结构变形对轮轨蠕滑力的影响是十分大的。因此,用现有基于弹性半空间理论的滚动接触理论分析轮轨蠕滑力,其结果大于实际轮轨滚动接触蠕滑力。  相似文献   

5.
牵引/制动载荷和轮轨黏着条件对轮轨系统动态相互作用影响显著,尤其是轮轨切向作用。基于车辆-轨道耦合动力学理论,建立地铁车辆-板式轨道空间耦合动力学模型;由于轮轨接触斑形状以及接触应力分布实际上呈明显的非赫兹特性,因此建立考虑轮对摇头角的轮轨非赫兹法向接触模型以及相应的轮轨非赫兹蠕滑模型,并用于耦合动力学的轮轨动态相互作用计算中。基于所建立的动力学仿真模型,系统分析牵引/制动载荷以及复杂的轮轨界面黏着条件对轮轨系统动态相互作用的影响。结果表明,牵引/制动载荷和轮轨黏着条件对轮轨切向接触应力及黏-滑区域分布影响显著,在干燥接触条件下,随着牵引/制动载荷的增大轮轨切向应力幅值增大,黏着区域减小,而当牵引/制动载荷较高且轮轨黏着水平较低时,接触斑内表现为全滑动状态。研究结果可为车轮/钢轨异常磨损和型面优化设计进一步研究提供理论基础。  相似文献   

6.
车轮滚动接触疲劳与磨耗耦合关系数值模拟   总被引:2,自引:0,他引:2  
滚动接触疲劳和磨耗是车轮失效的主要方式。通过三维弹性体非赫兹滚动接触理论得到接触斑内的法向、切向应力和材料上不同深度处的最大切应力分布,以CL60钢和贝氏体车轮钢为例,基于"layer"滚动接触疲劳失效模型和Zobory车轮磨耗模型,分析LM型车轮踏面和75 kg.m–1钢轨型面匹配时轮轨接触条件和车轮材质对车轮滚动接触疲劳和磨耗竞争关系的影响。计算结果表明,摩擦因数为0.3时,CL60钢在小蠕滑条件下会发生滚动接触疲劳损伤,在大蠕滑条件下只有轴重大于30 t时才会出现滚动接触疲劳损伤,而贝氏体车轮钢只有在大蠕滑条件且轴重为30 t时,载荷循环次数小于1×105的情况下才会出现滚动接触疲劳损伤;摩擦因数为0.6时,CL60钢和贝氏体车轮钢在各种工况下的滚动接触疲劳损伤速度都小于相同条件下的磨耗速度。  相似文献   

7.
使用与滑动速度相关的摩擦因数替代库伦摩擦定律中的常系数,结合mixed Lagrangian/Eulerian方法建立轮轨滚动接触有限元模型,分析牵引力主导的蠕滑工况下的干燥状态的轮轨滚动接触特性。通过与摩擦因数取值为常数的轮轨滚动接触分析结果对比发现:与滑动速度相关的摩擦因数对轮轨滚动接触最大接触应力和接触斑面积影响不大,均在1%以内;但是对轮轨接触斑内最大Mises应力、最大纵向切应力、最大横向切应力和最大等效塑性应变影响较大,特别是对最大纵向切应力影响幅度近20%;更需要引起注意的是对轮轨滚动接触摩擦力矢量分布和切向塑性应变分布影响明显,这对轮轨滚动接触疲劳损伤分析非常重要。  相似文献   

8.
随着铁路的高速化和重载化,车辆运行环境日益恶化,破坏的程度也越严重。应用有限元分析软件ANSYS建立了轮轨摩擦接触时的热弹性平面应变有限元模型,分析了不同蠕滑率、摩擦因数以及轴重对轮轨表层温升和应力的影响情况。结果表明:高速列车滚动运行时,温升不高,但也产生了可观的热应力;车轮滚动过程中承受冷热交替的载荷,很容易产生破坏;随着轴重、摩擦因数和蠕滑率的增大轮轨的摩擦热效应越明显。摩擦生热的计算分析对于揭示热损伤机理有很大的指导意义。  相似文献   

9.
为研究高速列车谐波磨耗车轮滚动接触疲劳特性,建立谐波磨耗车轮高速轮轨滚动接触数值分析模型。该模型考虑了车辆系统的一、二系非线性悬挂力、轮轨非线性接触几何关系并考虑了钢轨振动及轮轨间的激励响应对接触蠕滑的影响。以CRH2型高速列车为研究对象,运用多体动力学软件UM参数化建立其动力学数值模型;对实测统计数据中最常见的1阶、6阶和11阶谐波磨耗以及波深0.1 mm和0.3 mm下车轮的蠕滑率/力进行分析;以不同阶数、波深车轮的蠕滑特性参数为疲劳模型的输入参数,研究谐波磨耗车轮的疲劳特性。结果表明:无谐波磨耗车轮处于弹性安定状态,1阶波深0.1 mm和0.3 mm车轮和6、11阶波深0.1 mm车轮都处于棘轮效应状态,6、11阶波深0.3mm处于塑性安定状态;低阶小波深车轮以疲劳为主,高阶大波深车轮以磨耗为主;与阶数相比,滚动接触疲劳、磨耗对波深的变化更为敏感,波深的增加会促进车轮蠕滑力/率的进一步快速增大,从而车轮的切向力迅速增大。  相似文献   

10.
王彩芸  郭俊  刘启跃 《机械》2009,36(8):5-8
基于非Hertz滚动接触理论利用数值计算方法详细分析了静态接触情况下,轴重和曲线半径对轮轨接触质点间等效应力、接触斑粘滑区的分布、总滑动量和摩擦功的影响。分析计算表明,轴重增加引起轮轨接触质点间等效应力,接触质点间粘滑区的面积以及总滑动量的变化,同时对轮轨接触质点阍的摩擦功的变化有重要影响;小曲线半径处轮轨接触质点间的总滑动量,接触斑滑移区的面积以及摩擦功都明显增大,导致曲线上钢轨磨损加剧。因此曲线半径和轴重是影响轮轨滚动接触磨损的重要因素。  相似文献   

11.
采用显式有限元法建立考虑钢轨脱碳层的三维轮轨瞬态滚动接触模型,将轮轨真实三维几何、材料非线性和车辆—轨道高频动力作用充分考虑在内,采用"面-面"接触算法于时域内重现了车轮在带脱碳层钢轨上的瞬态滚动接触行为,得到了随时间变化的法、切向接触解。对比发现,屈服应力较低的脱碳层会增大钢轨表层的塑性变形,使得轮轨接触斑和黏着区增大,而最大法、切向接触应力和摩擦功相应降低;厚度有限(一般小于1 mm)的脱碳层对接触斑形状与尺寸的影响可忽略,但对接触应力、黏滑分布和摩擦功的影响不可忽略。脱碳层增厚会加大表面数层单元的总塑性变形,但第一层单元的塑性变形会因变形的再分布而稍稍变小。脱碳层的纵向不连续会使轮轨力、接触应力均在边界上呈现重要变化,车轮由带实测脱碳层钢轨滚入无脱碳层钢轨时,法、切向轮轨力会出现幅值分别为0.32和1.14 kN的动态力,相应的最大法、切向接触应力和摩擦功较脱碳层钢轨上的稳态值分别增加4.42%、19.71%和83.19%。某些条件下,这些突变或可引发不均匀磨耗,进而导致原本平顺的轨面上出现几何不平顺。  相似文献   

12.
通过分析轮轨蠕滑率和自由轮对的蛇行运动方程,得到轮对横移和摇头的相互耦合关系式;基于多体动力学软件UM建立某型高速动车组拖车动力学模型,对4种车轮多边形工况进行接触斑内的蠕滑力分析,研究车轮多边形对轮轨蠕滑特性和轮对横移的影响。结果表明:车轮多边形的阶数和幅值对轮轨蠕滑特性有较大的影响,总体上轮轨蠕滑力随车轮多边形阶数和幅值的增大而增大,当左右两侧车轮出现不同阶数主导的车轮多边形时,左右两侧车轮的纵向蠕滑力相差较大;两侧车轮多边形幅值的不同会破坏轮对的对中能力,高速运行时会出现蛇行失稳现象,并且车辆的非线性临界速度会随车轮多边形磨损的加剧而降低。  相似文献   

13.
为深入研究温湿度对高速列车车轮磨耗的影响,在已有的相关试验数据基础上,采用数据统计方法和Zobory、Archard磨耗模型,推导温湿度相关的函数型摩擦系数模型和考虑温湿度影响的磨耗预测模型;基于温湿度相关的函数型摩擦模型定义高速轮轨滚动接触关系,并采用mixed Lagrangian/Eulerian方法建立高速轮轨稳态滚动接触有限元模型,完成不同温湿度条件下高速轮轨接触特性分析,并利用考虑温湿度影响的磨耗预测模型,分析不同温湿度条件下车轮接触接触斑内磨耗特性;最后将现场监测数据与模型预测数据进行对比,分析考虑温湿度影响的磨耗预测理论可行性。研究结果表明:在不考虑横移及横向力的作用下,随着温湿度的上升,车轮接触斑内纵向蠕滑力/率、横向蠕滑力/率、磨耗深度均呈现下降的趋势;对比现场监测数据与模型预测数据可知,现场监测数据与模型预测数据之间相关性较好,且呈现出较为一致的变化规律,建立的考虑温湿度影响的磨耗预测理论模型可行性较强。  相似文献   

14.
列车紧急制动过程中踏面温度急剧升高导致车轮踏面的摩擦磨损机理与稳态运行时有显著差异。为了准确预测列车紧急制动过程中踏面磨耗,同时考虑踏面制动过程中车轮踏面与钢轨及闸瓦接触,基于有限元软件ABAQUS建立了踏面制动过程热机械耦合有限元模型,综合考虑制动温升对车轮踏面力学性能、硬度及摩擦因数的影响,仿真得到了紧急制动过程中车轮踏面上温度分布、硬度分布以及接触应力分布,并利用轮轨动力学软件UM得到了紧急制动过程中轮轨接触斑形状以及轮轨蠕滑区相对滑移分布,在此基础上结合Archard磨耗模型对单次紧急制动结束后的踏面磨损深度进行了定量预测。结果表明:对于制动初速度为130 km/h、160 km/h两种工况,踏面最高温度分别达到了397.0 ℃和485.9 ℃,踏面最大累积磨损深度分别为5.90 μm和7.43 μm,与踏面制动实验对比发现,预测结果与实验结果磨损位置及形貌分布趋势一致。  相似文献   

15.
利用WR-1轮轨滚动磨损试验机研究了不同轮轨接触参数(垂向力、蠕滑率、转速)下车轮多边形形成规律,分析了滚动过程中的轮轨振动特性,探索了多边形车轮试样的硬化与损伤规律。结果表明:当垂向力、蠕滑率和转速较小时,轮轨系统振动稳定,车轮试样不产生多边形;随垂向力、蠕滑率和转速增大,系统激发了明显的主振动频率,振动幅值随运行时间不断增大,车轮多边形逐渐产生;且多边形波深随垂向力和蠕滑率增大呈现增大趋势。试验后,车轮试样硬度随深度逐渐降低,未产生多边形的车轮试样硬度在圆周方向上无明显波动,多边形车轮试样硬度随轮廓变化而变化,波峰区域硬度低、波谷区域硬度高,波谷区域塑性变形层厚度明显大于波峰区域。多边形车轮试样波谷区域与未产生多边形车轮试样损伤均以疲劳磨损为主,波峰区域表面存在大量剥落坑,波峰与波谷处裂纹长度与深度相较于无多边形车轮试样都明显减小、裂纹角度显著增大。多边形车轮试样表面会受到反复的轮轨冲击-挤压作用,垂向力与蠕滑率的增加会使冲击-挤压作用更加剧烈,车轮多边形更加严重。研究结果对进一步了解车轮多边形形成机理及抑制措施提供一定的指导意义。  相似文献   

16.
在车轮-钢轨高速滚动接触疲劳试验机上进行油介质下高速轮轨低黏着特性和增黏试验,研究油介质条件下不同速度、蠕滑率、轴质量以及撒砂对黏着系数的影响,最高试验线速度200 km/h。结果表明:黏着系数随蠕滑率的增加先增大、再微降随后趋于平稳,在蠕滑率3%左右达到最大;随着速度的增加,黏着系数呈快速下降趋势,如速度从50 km/h增加至200 km/h时,最大黏着系数从0.092下降至0.049;当轴质量由12 t增至16 t时,黏着系数仅略微增加了0.01;撒砂后,黏着系数约为未撒砂时的3倍左右,且依然随速度增加而降低;撒砂会使得试验后轮轨表面产生很多麻坑,从而增大了表面粗糙度,对增黏起到了一定作用,但增黏砂会对接触表面造成显著损伤,在极端条件下会促进滚动接触疲劳的萌生,威胁运行安全。  相似文献   

17.
蠕滑曲线对于描绘轮轨相互作用关系是十分重要的,影响车辆牵引/制动控制、运行平稳性和安全性。选用POLACH基于实测数据提出的接触方法,详细调查影响轮轨蠕滑曲线变化的因素,参变量涵括衰减因子、函数型摩擦因数、轮轨接触几何、轴重和车辆运行速度。研究发现衰减因子可表征轮轨接触界面粗糙度,用以描述蠕滑曲线初始斜率的衰减;函数型摩擦因数则可描述蠕滑曲线在大蠕滑区下降的趋势;轨距角与轨顶处的蠕滑曲线存在不可忽略的差异,这便于解释钢轨小半径曲线侧磨现象;在潮湿工况下,黏着系数随速度的提升而降低,但计算所得黏着系数高于文献报道的实测结果。为此,引入一种考虑运行速度和微滑速度的函数型摩擦因数,取得了与实测数据相吻合的结果。  相似文献   

18.
列车向着高速与重载方向迅速发展,显著加剧了轮轨接触界面间的损伤。通过在轮轨接触界面进行摩擦管理能够有效地降低轮轨之间的磨损、显著提高列车的运行安全性以及降低运营成本。对轮轨接触界面摩擦管理研究现状进行综述,并介绍轮轨界面摩擦控制对轮轨作用力、黏着、磨耗、滚动接触疲劳以及振动与噪声影响的研究进展;展望了轮轨接触界面摩擦管理未来研究方向,即应针对不同应用环境和接触部位,研发合理的摩擦控制材料,以克服摩擦管理过程中对轮轨损伤及使用局限性等问题;应探究车轮踏面/轨顶面和轮缘/轨距面摩擦控制方式,严格控制摩擦材料喷涂量使两接触面不相互干扰,优化改进轮轨接触界面摩擦管理的最佳应用参数;应研发环境友好型的轮缘/轨距面润滑剂与车轮踏面/轨顶面摩擦控制剂,稳定调控轮轨接触界面的黏着特性。  相似文献   

19.
为了研究兰州局HXD3D型机车在兰新线、兰青线高寒高原复杂线路上运行时出现的剥离、粘连、车轮不圆等问题,利用瞬态三维有限元方法进行了轮轨静态接触和轮轨滚动接触分析,揭示了车轮横移量、轴重等因素对轮轨滚动接触部位、轮轨接触等效应力的影响规律。计算结果表明:接触面积随横移量的变化曲线与接触斑横向长度随横移量的变化曲线有相同的变化规律,当轴重在一定基础上继续增加时,车轮踏面内外应力增长速度较慢,接触面积的增长速度较快。轮轨滚动过程中,随着轴重载荷的增加,车轮整体范围内所受等效应力随之增加且有明显的变化,钢轨所受等效应力变化很小。研究结果为减少镟修成本和保障机车安全运行提供了可靠的理论依据。  相似文献   

20.
轨道结构参数对轮轨滚动接触应力影响   总被引:1,自引:0,他引:1  
利用三维弹性体非Hertz滚动接触理论及数值程序CONTACT,并借助于弹性力学中的Bossinesq-Cerruti力1位移公式和Gauss数值积分方法,分析JM3型踏面轮对沿曲线轨道滚动接触时轨底坡、轨距和曲线半径等轨道参数对轮轨滚动接触斑最大切应力、等效应力、正压力和磨耗数的影响.数值结果表明,当内外轨底坡为1/20时,轮轨接触斑的应力、磨耗数及正压力分布达到最小值,其中最大切应力与等效应力可分别降低40.15%、39.37%;现行使用1/40轨底坡情况下轮轨接触斑正压力较大,建议对磨耗型车轮踏面进行优化设计.适当增加轨距能达到降低轮轨最大切应力、等效应力和正压力的效果.曲线工况下接触斑正压力值显著增加,曲线半径能改变轮轨接触斑粘滑区的分布且减小曲线半径值会增加接触斑的总滑动量,从而导致轮轨磨耗数的显著增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号