首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
铁电材料由于具有高极化以及良好的化学、热稳定性等性质,在微波吸收领域得到了广泛关注。过去二十年,开展了大量关于铁电吸波材料的研究。系统地综述了铁电材料微波吸收的损耗机制与几类典型铁电材料的微波吸收性能。在损耗机制方面,详细论述了铁电材料的电损耗机制,包括介电损耗、电导损耗及界面损耗机制,同时对于多铁材料与铁电-磁杂化复合材料,分析了磁损耗机制以及磁-介电损耗协同机制,并对各类损耗的形成原因及作用机理进行了总结。在微波吸收性能方面,重点阐述了近些年Bi Fe O3基与Ba Ti O3基等铁电材料的微波吸收表现,包括单相材料、掺杂材料及复合材料,并对其在室温及高温下的微波吸收性能进行了比较,同时基于材料的结构、微结构与微波吸收强度及有效吸收带宽等参数的演变联系,对其微波响应机制进行了归纳。最后详细分析了影响铁电微波吸收材料发展所面临的关键问题,并对其未来的研究方向进行了展望。  相似文献   

2.
用溶胶-凝胶法制备La1-xKxMnO3粉晶,用X射线衍射仪和扫描电镜表征样品的晶体结构和微观形貌,用微波矢量网络分析仪测试了该样品在2~18 GHz微波频率范围的复介电常数和复磁导率,并计算损耗角正切及微波反射率,分析K掺杂量和样品厚度对体系微波吸收性能的影响及微波损耗机制。结果表明:晶体结构为钙钛矿型,颗粒形貌为不规则椭球状或短棒状;当样品厚度为2.40 mm、x=0.3时,吸收峰值为27.1 dB,10 dB以上有效吸收频带宽度达10.6 GHz。纳米La1-xKxMnO3兼具介电损耗和磁损耗,介电损耗相对较强。磁损耗因子和介电损耗因子随微波频率的变化相反,是基体中铁磁与反铁磁团簇在微波电磁场作用下相互转变引起。  相似文献   

3.
利用熔融沉积成型技术快速制备了石墨烯/聚乳酸复合材料和四氧化三铁/聚乳酸复合材料,测试了其电磁参数,并基于传输线理论计算模拟分析了石墨烯含量对其吸波性能的影响,进而确定了透波层、吸收层、再次吸收层的匹配材料和厚度范围,制造了石墨烯/纳米四氧化三铁吸波体。磁/电介质多孔结构型吸波体的测试结果表明:在X和Ku波段内实现了-8 dB吸收,反射率小于-10 dB的频宽达6.7 GHz,最大吸收峰值在14.2 GHz时达到-33 dB。研究发现,通过改变吸收层材料组成及其结构可以获得更好的吸波性能,周期性的多孔结构的存在可以使更多的电磁波进入复合材料内部,同时增加了吸收界面数量;此外,石墨烯和纳米四氧化三铁的组合使介电损耗与磁损耗之间产生了有效的互补,也增加了吸波性能。  相似文献   

4.
提出一种简便易行的方法制备核壳型FeBP@SiO2纳米粒子,该方法利用化学还原和溶胶凝胶相结合,实现复合粒子的核壳结构可控。通过改变SiO2壳厚度,研究了壳层厚度对吸波性能的影响,并对微波吸收机制进行分析和解释。结果表明,随着SiO2壳层厚度的增加,粒子微波吸收能力先增大后减小。当SiO2壳层厚度为38 nm时,FeBP@SiO2样品具有最强的微波吸收性能,在吸收涂层厚度为2.19 mm下反射损耗获得较好的吸收性能(-52.66 dB),这种增强的微波吸收性能主要来自新增磁-介电界面,从而提高了材料的阻抗匹配以及介电损耗的能力,通过设计复合粒子的核壳结构,可以实现复合吸波剂的性能调控,因此本研究为设计下一代新型复合微波吸收材料提供了重要参考。  相似文献   

5.
讨论了电磁波的吸波机理,及其性能测量和计算方法,叙述了电阻型损耗、介电损耗、磁损耗型三种损耗机制的涂层材料及其电磁波吸收损耗机理,对不同种类的吸波材料在雷达波隐身方面的应用进行了全面的综述,介绍了这一研究方向的最新进展,并分析了每种材料的主要特点。重点讨论了铁氧体、碳纳米管、导电高聚物等吸波材料的微观结构、化学性质、电磁特性对吸波性能的影响。对于磁损耗材料来说,良好的磁性能是其不可忽视的优点,但其密度高,稳定性较差,影响了其性能发挥。针对其存在的缺点,通过掺杂改性、共混等方式可提升涂层材料的吸波性能。在碳系材料中,多壁碳纳米管的吸波性能较好,将磁损耗吸波材料与碳纳米管进行复合、包覆是目前吸波性能提高的主要手段。导电聚合物等新型吸波材料具有质量轻、导电性好的特点,单独使用时,阻抗匹配性差,通过对其掺杂改性或与磁损耗型材料复合,可增强其阻抗匹配性,提升吸波性能。最后,指出了雷达吸波材料未来的研究发展方向。  相似文献   

6.
二维纳米材料拥有优异的电学、热学和力学性能,在高技术领域展现出巨大的应用潜力。其中,石墨烯具有大的比表面积和高的载流子浓度,是当代科技关注的对象。系统地展示了石墨烯基电磁功能材料的电磁响应机制以及吸波与屏蔽性能。在研究的电磁波频段(2~18 GHz),电磁损耗一般包括电导损耗、多重弛豫、磁共振及磁涡流。详细地介绍了这四种电磁损耗行为的物理形成机制和响应特性,总结了不同石墨烯基电磁功能材料的电磁损耗来源,并提出了设计高性能电磁功能材料的策略。随后,展示了高性能电磁功能材料的应用标准,给出了微波吸收与电磁屏蔽的响应规律,提出了两种改善电磁响应性能的方法。在电磁功能材料性能方面,介绍了石墨烯基电磁功能材料在微波吸收和电磁屏蔽领域最新研究进展。所涉内容涵盖石墨烯单相材料、异质材料及高温介电特性和电磁响应。另外,还系统地分析了石墨烯基电磁功能材料当前发展所面临的关键问题,并展望了未来的研究与发展方向。  相似文献   

7.
二维纳米材料拥有优异的电学、热学和力学性能,在高技术领域展现出巨大的应用潜力。其中,石墨烯具有大的比表面积和高的载流子浓度,是当代科技关注的对象。系统地展示了石墨烯基电磁功能材料的电磁响应机制以及吸波与屏蔽性能。在研究的电磁波频段(2~18 GHz),电磁损耗一般包括电导损耗、多重弛豫、磁共振及磁涡流。详细地介绍了这四种电磁损耗行为的物理形成机制和响应特性,总结了不同石墨烯基电磁功能材料的电磁损耗来源,并提出了设计高性能电磁功能材料的策略。随后,展示了高性能电磁功能材料的应用标准,给出了微波吸收与电磁屏蔽的响应规律,提出了两种改善电磁响应性能的方法。在电磁功能材料性能方面,介绍了石墨烯基电磁功能材料在微波吸收和电磁屏蔽领域最新研究进展。所涉内容涵盖石墨烯单相材料、异质材料及高温介电特性和电磁响应。另外,还系统地分析了石墨烯基电磁功能材料当前发展所面临的关键问题,并展望了未来的研究与发展方向。  相似文献   

8.
作为解决电磁污染问题与实现装备战场隐身的有效手段,吸波涂层材料具有广泛的应用前景。碳系材料因其广泛的来源、简单的制备工艺、低密度、高导电率等优点,在吸波涂层材料领域受到国内外研究人员的高度重视。对吸波涂层材料的损耗机制进行了叙述,介绍了电阻型损耗、电介质型损耗以及磁损耗三种损耗机制中电磁波的损耗和吸收原理。综述了碳纤维、碳纳米管、石墨烯等新型碳系材料的特性及其在吸波涂层材料领域的研究现状。对碳纤维进行活化处理或使用多孔碳纤维、螺旋碳纤维等代替普通碳纤维能够有效提高其吸波性能。碳纳米管具有多种结构,其中阵列状多壁碳纳米管吸波性能最佳,采用一些具备磁损耗的材料与碳纳米管进行共混、包覆或填充处理是目前的主要研究方向。石墨烯几乎没有磁损耗,单独使用时,阻抗匹配较差,影响其吸波性能的发挥,通常将石墨烯与磁损耗型材料复合,改善材料的阻抗匹配,提高吸波效果。最后,根据碳系吸波涂层材料的研究现状,对其未来的发展方向进行了展望。  相似文献   

9.
采用溶胶-凝胶自燃烧法制备了Ni_(0.5)Zn_(0.5)Fe_2O_4纳米晶,将其分别在550、800和1050℃下二次退火2h,利用XRD和微波矢量网络分析方法对二次热处理产物及其电磁性质进行了研究.结果表明,自燃烧后已形成完整的结晶尖晶石型Ni_(0.5)Zn_(0.5)Fe_2O_4纳米晶.在0.1~1.5 GHz的测试频率,纳米晶具有介电损耗和磁损耗,且随着热处理温度的升高,电损耗逐渐减小.在1050℃下退火后获得的Ni_(0.5)Zn_(0.5)Fe_2O_4纳米晶材料的μ'、μ"以及磁损耗正切tanδ_m明显大于在室温及550、800℃退火后的试样,在所测频率内具有优异的磁吸收性能.  相似文献   

10.
采用溶胶-凝胶与自蔓延燃烧相结合的方法制备出碳.纳米铁氧体复合材料,应用X射线衍射仪、扫描电镜分别对产物的晶体结构和微观形貌进行了表征分析,着重对比研究了超细碳材料加入前后的变化。利用小型烟箱试验测出产物在军用红外波段质量消光系数大于1.1m^2/g;利用矢量网络分析仪测试其在2~18GHz的电磁参数,并得到损耗角正切值随频率变化的曲线。结果表明:在纳米铁氧体中添加超细碳材料,铁氧体原有的磁损耗不变,介电损耗值有了显著提高,从而增加了电磁波的总损耗。由此证实超细碳-纳米铁氧体复合材料具有宽频吸波特性。  相似文献   

11.
周浩  高荣礼  符春林 《表面技术》2016,45(7):128-135
铁酸铋是目前唯一在室温下同时具有铁电性和反铁磁性的单相多铁性材料,并且这两种铁性有序之间存在磁电耦合效应,其铁电居里温度和反铁磁奈尔温度都远在室温以上,在光电器件、自旋电子器件、铁电随机存储器、磁电存储单元等领域有着广阔的应用前景。此外,作为一种典型的铁电材料,铁酸铋还具有较大的剩余极化强度、相对较小的带隙宽度以及较大的光吸收系数,理论上具有较大的光电转换效率,有望成为下一代太阳能光伏电池的备选材料。然而,目前有关铁酸铋材料光伏效应的机制还没有明确的定论,影响其光伏效应的因素较多,例如电畴、界面、厚度、退极化场、缺陷及极化强度等。欲提高铁酸铋材料的光电转换效率,许多问题亟待解决。综述了近几年来国内外关于铁酸铋薄膜光伏效应机制方面的研究。  相似文献   

12.
目的提高碳化硅微粒的微波吸收性能。方法利用改进的化学镀法,以硫酸钴和硫酸亚铁为主盐,次亚磷酸钠为还原剂,施镀温度为50℃,使用机械搅拌和超声分散相结合的方法,在预处理后的微米碳化硅颗粒表面沉积钴铁合金。通过X射线衍射仪(XRD)、X射线能谱仪(EDS)和扫描电子显微镜(SEM)分别对化学镀前后材料的结晶状态、组成成分和形貌特征进行了表征;利用矢量网络分析仪对化学镀前后材料在2~18 GHz频率范围内的电磁性能进行了测试,并通过计算得到了材料微波反射率损耗。结果钴铁合金呈微球状均匀沉积在碳化硅表面,有效地改善了碳化硅材料的电磁性能和微波吸收性能。碳化硅的介电常数虚部存在界面极化和缺陷极化两个弛豫峰(9.1、13.8 GHz),而沉积钴铁合金后,碳化硅材料Co-Fe/SiC增加了两个弛豫峰:介电弛豫峰(11.7 GHz)和磁弛豫峰(12.6 GHz)。正是由于Co-Fe合金对微波信号的介电弛豫和磁弛豫,有效提升了材料的吸波性能。当吸波层厚度为2.4 mm时,反射率在10 dB以上的吸收带宽达到3.8 GHz,20 dB带宽可以达到1.5 GHz。当吸波层厚度为2.3 mm时,频率为12.7 GHz时达到最大吸收峰值–43 dB。结论在碳化硅材料表面沉积钴铁合金是一种有效改进材料微波吸收性能的方法,且该材料是一种高效、宽频的微波吸收材料。  相似文献   

13.
铁电材料的优秀电学性能孕育了它广阔的应用前景,其电子元件有着集成度高、能耗小、响应速度快等众多优点。而且目前研究者将铁电材料同其它技术相结合,使新诞生的集成铁电材料性能更为优秀。介绍了铁电材料的发展历史和当前的研究概况。详细描述了几种铁电材料的性能特点与研究进展,包括压电材料及在微机电系统中的应用,储能用铁电介质材料,有机铁电薄膜材料,具备2种以上初级铁性体特征的多铁材料,铁电阻变材料等。最后,总结了铁电材料研究中尚未解决的技术问题,并展望了铁电材料的发展趋势。  相似文献   

14.
对国内外近年来有关Ti(C,N)基金属陶瓷材料的显微结构与性能的研究成果进行了总结。首先,介绍了Ti(C,N)基金属陶瓷材料的发展史;Ti(C,N)基金属陶瓷的显微结构、力学性能,以及显微结构与其性能的关系等。其次,列举并比较了不同的烧结方法所制备的Ti(C,N)基金属陶瓷材料的力学性能;结果表明:微波烧结和放电等离子烧结技术在较低的温度就可以成功烧结高硬度、高抗弯强度与断裂韧性高的产品,但实际生产中,这类技术还没有广泛被应用,应用最广的是真空烧结方法。最后介绍了Ti(C,N)基金属陶瓷材料的今后的研究趋势。  相似文献   

15.
随着雷达探测技术的发展,对装备的隐身性能也提出越来越严苛的要求,隐身技术可显著提高军事装备及军人的生存能力,提升战斗效率,取得更大的战场控制权。传统吸波涂层的制备方法工艺复杂且效率低下,作为一种热喷涂技术,由于等离子喷涂具有工艺简单、适用范围广、可操控性和可调控性高等优点,在制备吸波涂层中得到广泛应用。材料表面状态对其性能有着重要的影响,等离子渗碳同样作为一种表面处理工艺,对提高材料表面强度、耐磨性等具有重要作用。介绍了等离子喷涂的基本原理以及送粉速率、输出功率、喷涂距离、喷涂速度等涂层制备基本工艺参数对涂层的影响。研究表明,送粉速率相同时,喷涂功率过大或过小均会导致涂层质量下降;喷涂距离过小会导致涂层与基体的结合力降低,而距离过大又会降低喷涂效率和涂层密度,合理调控等离子喷涂的工艺参数对涂层质量的好坏有着直接且重要的影响。总结了近年来等离子喷涂制备吸波涂层方面的研究成果,介绍了传统渗碳热处理技术与新型渗碳热处理技术的发展,概述了等离子渗碳的发展和现状,可知加工时间及加热温度对渗碳层的性能产生了较大影响。对以上两种表面改性技术未来的研究发展进行了展望, 为航空航天、军事装备等涉及关键零部件表面改性方面提供一定的参考价值。  相似文献   

16.
对湿度的精密监测关系着一些潮解材料的保存,电子仪器的测量精准度等各个方面。高性能湿度传感器在现代工业、农业、医疗等领域均具有广泛的用途。湿度敏感材料包括介电材料、半导体材料、金属材料等。作为一种特殊的含有自发电极化的介电材料,铁电材料在湿敏传感器领域的应用越来越受到人们的关注。理论上,铁电材料的电极化对于表面的极性水分子具有强的吸附作用,同时,表面附着的极性水分子也可以反过来影响铁电材料的铁电极化、介电、电阻抗等性能。因此,铁电材料在高性能湿敏传感器件中具有重要的应用前景,铁电湿敏材料具有灵敏度高、响应快、稳定性好等优点。本文综述了铁电湿敏材料的发展历史和现状,详细总结了铁电材料湿度传感的物理机制。将铁电湿敏材料按类别、性质分为铁电纳米、铁电陶瓷、铁电薄膜、铁电单晶四大部分,分别综述了它们湿敏特性的研究进展及影响湿敏性能的各种因素,以期为未来新型铁电材料的湿敏研究提供一些科学参考。  相似文献   

17.
目的研究不同的纳米结构对Fe3O4纳米材料微波吸收性能的影响。方法采用水热法和高温碳热还原法,获得了纳米纺锤体、纳米管和开口空心球结构的三种磁性Fe3O4纳米材料,采用XRD、SEM和矢量网络分析仪研究了其物相、形貌和电磁特性。结果在这三种结构纳米Fe3O4材料中,空心球结构具有最小的介电常数和最高的波阻抗匹配系数,其磁损耗表现出双共振特性,且在7.5~14.3 GHz范围内,Fe3O4开口空心球的衰减系数明显高于另外两种结构的Fe3O4纳米材料,有利于拓宽材料的微波吸收带宽。在1.8~3.0 mm厚度范围内,Fe3O4开口空心球的反射损耗带宽均大于其他两种结构,在2.2 mm厚度下达到了5.0 GHz的有效吸收带宽(90%吸收),覆盖的频率范围为7.3~12.3 GHz。结论Fe3O4开口空心球由于特殊的结构而产生的双磁共振特性,增强了材料的微波衰减能力和阻抗匹配特性,其微波吸收能力明显优于纳米纺锤体和纳米管。经过超结构设计,可以实现宽带微波吸收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号