首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
通过优化倍增层的厚度,研究了InAlAs/InGaAs雪崩光电二极管增益带宽积和暗电流之间的关系。利用仿真计算得出200 nm厚的倍增层能够改善增益带宽积并降低暗电流。制成的InAlAs/InGaAs 雪崩光电二极管性能优异,与计算趋势一致。在获得0.85 A/W的高响应和155 GHz的增益带宽积的同时,器件暗电流低于19 nA。这项研究对雪崩光电二极管在未来高速传输的应用具有重要意义。  相似文献   

2.
李俊斌  刘爱民  蒋志  杨晋  杨雯  孔金丞  李东升  李艳辉  周旭昌 《红外与激光工程》2022,51(4):20210399-1-20210399-8
利用二极管电流解析模型分析了InAs/GaSb超晶格长波红外探测器暗电流的主导机制。首先,通过变面积二极管I-V测试证实77 K下采用阳极硫化加SiO2复合钝化的InAs/GaSb超晶格长波红探测器的暗电流主要来自于体电流,而非侧壁漏电流;然后,利用扩散电流、产生复合电流、直接隧穿电流和陷阱辅助隧穿电流模型对InAs/GaSb超晶格长波红外探测器的暗电流进行拟合分析。结果表明:在小的反向偏压下(≤60 mV),器件暗电流主要由产生复合电流主导,而在高偏压下(>60 mV),器件暗电流则主要由缺陷陷阱辅助隧穿电流主导。并分析了吸收层掺杂浓度对这两种电流的影响,证实5×1015~1×1016 cm?3是优化的掺杂浓度。  相似文献   

3.
基于InGaAs/InP雪崩光电二极管,讨论吸收层厚度和少子寿命以及倍增层厚度和少子寿命对暗电流的影响。研究表明,吸收层厚度影响热产生复合(shockley-read-hall, SRH)和缺陷辅助隧穿(trap-assisted tunneling, TAT)暗电流大小,而倍增层厚度则对TAT和直接隧穿(band-band tunneling, BBT)暗电流影响较大。少子寿命可以等效为缺陷的影响,因而对与缺陷相关的SRH和TAT暗电流影响较大。对暗电流机理的分析,为研究低暗电流高信噪比的雪崩器件提供良好的理论预测。  相似文献   

4.
文章中设计的四象限InGaAs雪崩光电二极管(Avalanche Photo Diode,APD)的管芯结构采用正入光式平面型结构,而材料结构采用吸收区、倍增区渐变分离的APD结构,在对响应时间、暗电流和响应度等参数进行计算与分析的基础上,优化了器件结构参数.试验结果表明,其响应时间≤1.5 ns,响应度≥9.5 A/W,暗电流≤40 nA,可靠性设计时使PN结和倍增层均在器件表面以下,可有效抑制器件表面漏电流,提高器件的可靠性.  相似文献   

5.
本文研究了1.0~1.6μm 波长范围低暗电流 InGaAs/InP PIN 光电二极管。阐明了造成通常 InGaAs/InP 光电二极管暗电流的原因是通过 InGaAsp-n 结不稳定表面的漏电流。制造了一种新式结构的光电二极管,并对其光电特性进行了研究。在这种结构中,p-n 结的边缘露在 InP 表面,结果得到了暗电流低于1nA 的稳定的 InGaAs/JnP 光电二极管,此值约为锗光电二极管的1/1000。  相似文献   

6.
基于InGaAs/InP吸收区、渐变区、电荷区和倍增区分离雪崩光电二极管(SAGCMAPD)器件结构,利用数值计算方法,模拟了各层参数对器件频率响应特性的影响.模拟结果表明,吸收层、倍增层厚度及电荷层面电荷密度可影响器件的-3 dB带宽;随增益的增加,器件带宽会逐渐降低;电荷层面电荷密度对器件击穿电压有明显影响.结合此模拟结果,制作出了高速InGaAs/InP雪崩光电二极管,并对器件进行了封装测试.测试结果表明,该结果与模拟结果相吻合.器件击穿电压为30 V;在倍增因子为1时,器件响应度大于0.8 A/W;在倍增因子为9时,器件暗电流小于10 nA,-3 dB带宽大于10 GHz,其性能满足10 Gbit/s光纤通信应用要求.  相似文献   

7.
研制了高速、高效、低噪声的InGaAs/InGaAsP/InP长波长(1.0~1.7μm)台面型雪崩光电二极管(φ=75μm),器件采用分离的吸收区、雪崩区和能隙过渡区的SAGM结构。研究了器件最佳结构参数设置、在InP上匹配生长InGaAs、InGa AsP及其厚度和载流子浓度的控制问题。器件最大倍增因子大于50,灵敏度大于0.70μA/μW,暗电流I_D的典型值约为20nA(V_r=0.9V_B)。  相似文献   

8.
杜玉杰  邓军  夏伟  牟桐  史衍丽 《激光与红外》2016,46(11):1358-1362
基于碰撞离化理论研究了异质材料超晶格结构对载流子离化率的作用,设计得到In0.53Ga0.47As/In0.52Al0.48As超晶格结构的雪崩光电二极管。通过分析不同结构参数对器件性能的影响,得到了低隧道电流、高倍增因子的超晶格结构雪崩层,根据电场分布方程模拟了器件二维电场分布对电荷层厚度及掺杂的依赖关系,并优化了吸收层的结构参数。对优化得到的器件结构进行仿真并实际制作了探测器件,进行光电特性测试,与同结构普通雪崩光电二极管相比,超晶格雪崩光电二极管具有更强的光电流响应,在12.5~20 V的雪崩倍增区,超晶格雪崩光电二极管在具备高倍增因子的同时具有较低的暗电流,提高了器件的信噪比。  相似文献   

9.
美国德克萨斯大学和朗讯科技公司的研究人员用端照射波导结构制作了波导约束 In Ga As/ In Al As雪崩光电二极管 (APD)。该器件综合了波导与雪崩光电二极管的特征 ,可望用作对 1.55μm通信波段快速灵敏的光电二极管。该器件建立在独立吸收负载倍增 (SACM)电路的基础上 ,全增益带宽 2 7GHz,增益 -带宽乘积 12 0 GHz。因为 In Al As可透过 1.55μm光 ,且过量噪声低 ,所以选它作器件的倍增区和包覆材料。在 In P衬底和缓冲层上用分子束外延生长各层。完全的波导独立吸收负载倍增雪崩光电二极管在 90 %击穿时暗电流保持在 50 n A以下 …  相似文献   

10.
祁娇娇  赵东升  徐长斌 《红外》2018,39(12):12-15
采用Sentaurus TCAD 软件对 n-on-p型Hg1-xCdxTe红外探测器的结构进行了建模,并就结深对光伏二极管电流的影响进行了仿真和分析。结果表明,结深对电流的影响受吸收层厚度和p区载流子浓度两方面的作用。对不同波长二极管的电流随结深的变化情况进行了拟合,得出了不同波长条件下电流达到最大值时的结深大小。  相似文献   

11.
An n-channel BICFET in the InGaAs/InAlGaAs/InAlAs material system with a current gain in a large-area device of greater than 900 is discussed. The device structure utilizes a self-aligned refractory emitter contact and high-temperature processing and still obtains an ideality factor of 1.2 for the source input diode  相似文献   

12.
The operation of a separate absorption multiplication region avalanche photodiode (SAM-APD) introduces noise as results of randomness in the number and in the position at which dark carrier pairs are generated, randomness in the photon arrival number, randomness in the carrier multiplication, and the number and the position of the photogenerated carriers in the bulk of the diode. The dark current results in a smaller mean multiplication gain in excess noise factor versus mean multiplication plot due to the partial multiplication process of these generated carriers compared to the usual values associated with carriers injected at one edge of the diode. Previous analyses of mean multiplication and excess noise factor for an arbitrary superposition of injected carriers are extended to allow the presence of dark carriers in the multiplication region under the model, which admits variation (with position) of the band-gap, dark generated rate, and ionization coefficients with each stage for the superlattice APD, and the presence of impact ionization in the absorption region. The calculations reveal the presence of impact ionization carriers in the absorption region which results in a larger excess noise factor than the usual values associated with carriers injected at one edge of the device, and fits well with experimental results  相似文献   

13.
Low dark current and low multiplication noise properties for an In0.53Ga0.47As/InP avalanche photodiode are described. The diode is prepared with an In0.53Ga0.47As light absorption layer and an InP avalanche multiplication region. The lowest dark current density of5.2 times 10^{-4}A/cm2is obtained at 90 percent of a breakdown voltage. Multiplication noise power is proportional to the 2.7th power of the current multiplication factor. Impact ionization coefficient by holes is larger by 2-3 times than that by electrons in  相似文献   

14.
The authors describe the fabrication of an InGaAs/InAlAs superlattice avalanche photodiode with a gain-bandwidth product of 90 GHz. The device is composed of an InGaAs/InAlAs superlattice multiplication region and an InGaAs photoabsorption layer. The effect of the superlattice multiplication region thickness on the gain-bandwidth product was studied. A gain-bandwidth product of 90 GHz was obtained for the device with a multiplication region thickness of 0.52 mu m. Low noise performance is compatible with the high gain-bandwidth product due to improvement of the ionization rate ratio made by introducing a superlattice structure into the multiplication region.<>  相似文献   

15.
In this paper, we present temperature‐dependent current–voltage measurements of tunnel junctions lattice matched to InP at temperatures ranging from room temperature to 220 °C. Temperature‐dependent tunneling properties were extracted by fitting the current–voltage characteristics using a simple analytical formula. Three different designs of tunnel junction were characterized, including a bulk InAlGaAs tunnel junction, an InAlGaAs tunnel junction with InAlAs cladding layers and an InGaAs/InAlGaAs quantum‐well tunnel junction. Each device exhibited different temperature dependence in peak tunnel current and excess current, with the quantum‐well tunnel junction exhibiting the greatest temperature sensitivity. We use a non‐local tunneling model, in conjunction with a numerical drift‐diffusion solver, to explain the performance improvement available by using double heterostructure cladding layers around the junction region, and use the same model to explain the observed temperature dependence of the devices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
<正>Aminiaturized near infrared single photon detector is demonstrated by integrating a thermoelectric cooler(TEC), a thermistor, and a planar type In Ga As/In P separate absorption, charge and multiplication structure single photon avalanche diode into a butterfly case. The performance of the device at different temperatures is tested. It can achieve 20.3% single photon detection efficiency and 1.38 k Hz dark count rate when the chip is cooled to 223 K. The test results show that even when...  相似文献   

17.
在平面型InGaAs P-i-N短波红外探测结构中,p型杂质在材料中纵向和横向的扩散是决定pn结位置及其光电性能的主要因素,本文采用扫描电容显微方法(SCM)获得了扩散成结InGaAs/InAlAs像元剖面的二维载流子分布,从而实现对不同扩散条件下pn电场结的精确定位和分析.此外,对于InGaAs/InP探测器,SCM...  相似文献   

18.
刘宇安  罗文浪 《半导体学报》2014,35(2):024009-5
推导了AlGaInP多量子阱LD器件暗电流RTS 噪声与缺陷相关性模型,实验结果表明暗电流RTS 噪声由有源区异质结界面载流子数涨落引起。根据相关性模型,确定了缺陷类型,定量确定了缺陷能级。分析了暗电流RTS 噪声功率谱密度的转角频率。实验结果和理论预测一致。本文结论提供一种确定AlGaInP多量子阱LD器件有源区深能级的有效方法。  相似文献   

19.
An InP/InGaAsP/InGaAs avalanche photodiode with an effective guard-ring structure has been successfully fabricated. The diode has a planar structure with an n-InP layer buried by n?-InP in the multiplication region The structure has been grown on a (111)A-oriented InP substrate by two-step growth of liquid-phase epitaxy. Prior to the second growth of n?-InP a meltback technique was used to reduce dark current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号