首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
针对铁、硫含量较低的铀矿,采用外源添加不同浓度的Fe~(3+)及单质硫的方法强化铀矿生物浸出,研究外源Fe~(3+)、单质硫对浸出体系中pH、氧化还原电位值Eh、铁离子浓度、铀浓度的影响。结果表明,Fe~(3+)初始浓度分别为0、1、2、3和4g/L时,铀浸出率分别为81.85%、92.61%、89.15%、86.28%和86.09%,Fe~(3+)浓度为1g/L时浸出铀浓度最大,不同初始浓度的Fe~(3+)对铀矿浸出具有显著影响。在2g/L Fe~(3+)体系中,添加2g/L单质硫与未添加单质硫相比,pH上升较慢,铀浸出率提高1.63个百分点;SEM-EDS分析表明,与原矿相比,铁体系中矿物表面粗糙且矿石结构疏散,矿石颗粒比表面积增加,浸出渣样中伴随黄钾铁矾等沉淀的产生,添加2g/L单质硫的体系中黄钾铁矾显著降低。  相似文献   

2.
某砂岩型铀矿床矿石微生物浸出试验   总被引:1,自引:1,他引:0       下载免费PDF全文
对某砂岩型铀矿床的矿石进行了不同酸度和Fe~(3+)浓度的微生物浸出试验,以及与酸法浸出(H_2SO_4浓度5 g/L)的对比试验。结果表明,微生物浸铀在4 g/L酸度、2 g/L Fe~(3+)条件下铀浸出率最高(96.43%),比酸法浸出率高27%;微生物溶浸时Fe~(3+)浓度超过2 g/L对浸铀没有明显的提升作用。  相似文献   

3.
在分析某低品位难处理铀矿工艺矿物学性质的基础上,开展了不同硫酸浓度、铁浓度和温度等因素对铀浸出的影响研究。通过X射线衍射仪和扫描电镜等手段分析铀矿浸出过程中的物相和形貌特征变化,揭示了硫酸和氧化剂Fe~(3+)对低品位难处理铀矿浸出的作用机理。研究结果表明,该铀矿石在硫酸浓度214.5g/L、Fe~(3+)浓度11.1g/L的条件下45℃浸出48h,铀浸出率达到98.38%;Fe~(3+)的增加可破坏脉石结构,且其氧化作用可加快铀的浸出速率。  相似文献   

4.
为探究新疆某砂岩铀矿床矿石的浸出性能,获得不同硫酸浓度条件下矿石的最优浸出条件及参数,对砂岩型铀矿石进行室内不同硫酸浓度(0.2~10g/L)摇瓶浸出对比试验,液固比为5∶1,浸出环境温度为17℃,浸出周期96h,一组添加300mg/L双氧水,另一组不加氧化剂。试验结果表明,未添加氧化剂时,硫酸浓度为8g/L时浸出率最大,酸度增加到10g/L,铀浓度反而下降了5.78mg/L,浸矿在48h便几乎达到了平衡;酸度低于0.4g/L时,浸出5h便出现峰值,继续浸出,浸出率下降。添加氧化剂时,浸出率与硫酸浓度呈正相关,且添加氧化剂后浸出速率加快,但浸出平衡点无明显变化,当酸度低于0.6g/L时,浸出后期出现铀浓度下降,硫酸浓度为8g/L时,浸出率可达97.17%,硫酸浓度增加到10g/L,浸出率并无明显增加。酸法浸出可应用于此铀矿床,且最佳浸出剂硫酸浓度为8g/L。  相似文献   

5.
为改善以往生物浸铀效率不高的缺陷,通过添加外源Fe2+及改变矿物粒径来提高生物对铀的浸出率。研究结果表明:外源Fe2+浓度分别为0、0.5、1.0和2.0 g/L时,铀浸出率分别为87.34%、88.27%、91.23%、89.13%,当浸出体系中Fe2+浓度为1.0 g/L时,铀矿石会产生部分溶解且表面粗糙孔隙明显,有利于铀的浸出,溶浸液中存在适量的Fe2+对生物浸铀的能力具有提升效果。另外,外源Fe2+对铀矿生物浸出符合固体产物层缩核模型,浸出过程主要受扩散控制。当粒径<- mm和-5 mm时铀浸出率分别为91.23%和83.70%,矿物粒径适当减小可增大颗粒比表面积,同样利于铀的浸出。  相似文献   

6.
为探索新疆某可地浸砂岩型铀矿床开采工艺参数和浸出过程中的元素迁移规律,在室内开展不同HCO3-浓度梯度(0.6、1、3、5、7g/L)的碱法摇瓶试验,同时对比是否添加氧化剂对浸出的影响。结果表明:碱法浸出铀浓度与加入HCO3-浓度正相关,且添加氧化剂时,浸出效果明显更优。HCO3-浓度在0.6~1g/L时,铀浸出效果不明显,HCO3-浓度增加到3g/L时,铀浓度出现增长突变,继续增大HCO3-浓度时,铀浓度虽呈增长趋势,但增长幅度较小。综合考虑效益、成本等因素,最佳HCO3-浓度为3g/L,且添加氧化剂更有利于浸出。  相似文献   

7.
为了提高铜阳极泥中铜的浸出率和稀贵金属的富集率,在硫酸浸出体系中添加Fe~(3+)离子促进铜的浸出,采用响应曲面法(RSM)设计试验并建立浸出的拟合方程。响应曲面分析结果表明:浸出时间和液固比与铜的浸出率有显著的相关性。得出的最佳浸出条件:浸出时间2.4 h、酸度110 g/L、液固比10:1,此条件下铜的浸出率为96.52%,碲微量浸出。  相似文献   

8.
在实验室开展了某砂岩铀矿石CO_2+O_2浸出工艺的柱浸试验。当液固体积质量比达到5.20(mL/g)时,铀浸出率可达到67.05%;HCO_3~-浓度是影响铀浸出浓度的关键因素,保持HCO_3~-浓度不低于800mg/L时浸铀效果较理想;浸出中后期铀浓度随矿石中铀的消耗而降低;溶浸液与矿石中碳酸钙、黄铁矿相互作用导致浸出液中Ca~(2+)、SO_4~(2-)浓度升高,pH在6.6以上时方解石和白云石都处于过饱和状态,为避免发生沉淀,应将pH控制在6.6以下;试验中石膏虽未达到饱和,但地浸实践中应关注Ca~(2+)、SO_4~(2-)浓度持续升高趋势,避免发生石膏沉淀堵塞。  相似文献   

9.
以沥青铀矿石为对象,进行了10g/L、20g/L硫酸浸出和上述两种条件酸化后的细菌浸出试验。结果表明,上述四种条件下铀浸出率分别为20.86%、26.47%、30.29%和35.53%,细菌可以有效氧化浸出体系中的元素硫和Fe2+,使pH、Eh、亚铁离子浓度、总铁浓度等特征参数朝着有利于铀矿石浸出的方向变化;在同等条件下,细菌浸出的浸出率比硫酸浸出的提高了34.8%~45.2%。  相似文献   

10.
对高铁闪锌矿湿法炼锌过程中产出的含铟硫酸钙渣开展了一段酸浸—浸出液铁粉还原—还原液净化预处理—萃取—反萃试验研究,实现了铟与其他杂质元素的分离与高效回收。含铟硫酸钙渣在终酸70g/L、温度80℃、液固比4∶1、时间2h的条件下进行一段酸浸,铟浸出率98%以上;用铁粉将浸出液中的Fe~(3+)还原为Fe~(2+),铁粉过量系数1.5,Fe~(3+)还原率在98%以上;添加8g/L的活性炭对还原液进行净化预处理;用30%的P204在酸度70g/L、相比A/O=4∶1、混合时间3min、温度45℃的条件下对净化液进行四级逆流萃取,铟萃取率达到97.5%以上,萃余液含铟小于4mg/L;负载有机相用6mol/L的盐酸,相比A/O=1∶12,经过四级连续反萃,反萃液铟浓度可富集至70g/L以上。  相似文献   

11.
为探究酸法地浸过程中Fe3+作为氧化剂时铀的浸出情况,通过使用模拟软件PHREEQE建立模型,观察浸出液各组分的浓度及迁移变化,揭示氧化剂Fe3+与浸出铀之间的关系。结果表明:作为氧化剂的Fe3+促使铀矿的溶解及Fe2+的出现,随着铀的浸出结束,Fe3+的浓度趋于稳定;且铀矿的溶解速率与Fe3+、Fe2+的增长速率密切相关。Fe3+的浓度增长变快时,Fe2+的浓度增长及铀矿的溶解也加快;随着铀矿的溶解速率降为零后,Fe2+的增长速率也趋近于零,氧化剂Fe3+的增长速率也降为零。  相似文献   

12.
砂岩型铀矿地浸采铀体系中,溶解铀在水岩界面发生的吸附作用对铀的浸出造成一定影响。为研究CO_2+O_2中性地浸条件下含矿层砂岩介质对溶解铀的吸附特征,采用取自新疆蒙其古尔铀矿床围岩和含铀浸出液,在实验室开展了不同粒径介质和不同固液比的吸附试验。结果表明,不同粒径介质对铀的平衡吸附量介于11.62~20.28mg/g,铀的平衡吸附量以及吸附率与粒径负相关;不同液固比试验条件的平衡吸附量介于10.07~18.23mg/g,铀的平衡吸附量与液固比正相关,铀的吸附率则与液固比负相关。围岩对铀的吸附动力学特征符合粒内扩散模型。试验结果可以为地浸采铀溶质运移模拟过程中吸附模型及其参数的确定提供依据。  相似文献   

13.
通过室内柱浸试验,探析不同粒度(2.5~5、5~10、2.5~10 mm)铀矿在生物浸出过程中金属离子与铀浸出的规律,分析柱浸过程中pH、Eh、K+、Ca2+、Na+、Mg2+、Al3+、Fe3+与铀的浸出行为,并运用PHREEQC计算金属离子的饱和指数及浸出液中铀的存在形式。结果表明,铀矿中K+、Ca2+、Na+、Mg2+、Al3+、Fe3+与铀的浸出趋势相似,粒度越小该铀矿中浸出的金属离子越多,经过66 d柱浸试验,三种粒度的铀矿铀浸出率分别为85.93%、69.75%、79.65%。酸化阶段及菌浸阶段硬石膏达到饱和,酸化阶段磷酸铀酰达到饱和,菌浸阶段氟化铁达到饱和。柱浸浸出液中铀主要以正六价存在,酸化阶段铀化学形态主要为硫酸铀酰及磷酸铀酰,菌浸出阶段主要为硫酸铀酰及氟化铀酰。  相似文献   

14.
以铀矿渣为载体,采用逐次降低接种率循环培养的方法,开展了氧化亚铁硫杆菌的固定化培养试验,研究了聚乙二醇2000(PEG2000)对游离细菌和铀矿渣载体柱中固定化细菌生长的影响。试验结果表明:90 mg/L PEG2000对游离细菌的生长促进作用最大。铀矿渣和K3环材料均可作为载体进行细菌固定化培养。固定化完成时,其亚铁离子的平均氧化速率分别稳定在0.6和0.5 g/(L?h)附近。90 mg/L PEG2000对循环培养和连续培养阶段的固定化细菌生长均具有促进作用。循环培养阶段,可使Fe2+氧化为Fe3+的时间缩短约1/3。连续培养阶段,PEG2000能够促进固定化细菌对亚铁离子的氧化速率,在0.5 L/h进液流量时,未加PEG2000的亚铁离子氧化速率为7.04 g/(L?h),而加PEG2000的,达到了8.18 g/(L?h),亚铁离子氧化效率提高了16.2%。  相似文献   

15.
采用振荡淋洗方法对三种粒径(+2mm、-2mm+0.15mm、-0.15mm)某尾矿库周边铀污染土壤进行去污试验,选用盐酸、硝酸、柠檬酸、草酸为淋洗剂,通过控制淋洗浓度、液固比、时间、温度、混合淋洗等因素来确定较优的淋洗条件。结果表明:各淋洗剂对铀污染土壤的去污效果为草酸盐酸硝酸柠檬酸;当淋洗浓度大于0.5mol/L、淋洗时间大于8h或液固比大于10∶1时,其淋洗效果都逐渐趋于稳定;提高淋洗温度可显著提升淋洗效果;选用草酸+盐酸和草酸+硝酸两组较优混合淋洗组合对全粒径土壤进行淋洗时,土壤中铀去除率均达50%以上,总含铀量分别降至27.15、24.32mg/kg,均达到土壤修复目标(40mg/kg)。  相似文献   

16.
对不同分维值的铀矿石进行柱浸试验。结果表明,在硫酸质量浓度为25g/L、布液强度为30L/(m2.h)、浸出时间30d、液固比2∶1的条件下,分维值为2的铀矿石的堆浸效果较好,铀浸出率达到97.31%。  相似文献   

17.
以微生物柱浸试验的卸柱矿渣为原料,使用100、150、200g/L的酸液进行拌酸熟化,熟化装柱后实行5%~10%日喷淋量20h的喷淋制度。结果表明,喷淋38天后,铀累计浸出率分别为22.2%、28.1%、33.8%,渣计浸出率分别为29.55%、32.96%、40.03%,耗酸率分别为0.23%、0.62%、0.85%。从经济角度出发,建议采用200g/L的酸度进行拌酸熟化比较适合。  相似文献   

18.
酵母提取物对浸铀混合菌群活性的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
考察了不同浓度的酵母提取物对浸铀混合菌群生长和氧化活性的影响。结果表明,随着酵母提取物浓度的增大,有机物对浸铀混合菌生长、氧化活性有较强的抑制作用;酵母提取物浓度小于1g/L时,对混合菌的氧化活性和生长周期影响较小,微量的酵母提取物反而能促进浸铀混合菌群的细胞分裂,提高铁氧化速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号