首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
铜钴冶炼渣还原造锍熔炼回收铜和钴   总被引:2,自引:1,他引:1       下载免费PDF全文
从试验上验证了铜钴硫化矿冶炼新工艺的可行性,并着重研究了新工艺中铜钴冶炼渣还原造锍熔炼阶段还原剂焦炭用量、硫化剂黄铁矿用量、熔炼温度和保温时间对铜钴回收率的影响。结果表明,加入铜钴冶炼渣质量分数6%的焦炭和20%的黄铁矿,在1 350℃熔炼3h,弃渣含铜、钴可分别降至0.12%和0.074%,产品铜钴锍中铜、钴回收率分别达到92.95%和89.95%。贫化渣主要物相为铁橄榄石(Fe2SiO4)和磁铁矿(Fe3O4),铜钴锍主要物相为硫化亚铁(FeS)、钴铁硫化物(Fe0.92Co0.08S)、吉硫铜矿(Cu8S5)。  相似文献   

2.
含钴铜水淬渣还原熔炼综合回收研究   总被引:2,自引:0,他引:2  
以焦炭和粉煤为还原剂,分别研究了还原温度、还原剂配入量、还原时间对渣中钴和铜的回收率的影响。实验结果表明,以粉煤为还原剂进行还原熔炼时,铜和钴的回收率较高。当还原温度为1300℃、粉煤配入量15%、还原时间1 h、石灰加入量3%~5%时,钴和铜的回收率分别为97.06%和93.42%。  相似文献   

3.
研究了含钴、镍、铜淘琢含钴废合金的综合利用,着重讨论了叔胺萃取分离钴铜与镍以及采用分段反萃分离钴与铜,以达到镍、钴、铜分别回收利用。文中介绍了工业性试验的工艺流程,技术条件以及试验结果。  相似文献   

4.
赞比亚某铜钴硫化矿浮选工艺研究   总被引:2,自引:0,他引:2  
赞比亚某铜钴硫化矿含铜1.25%、钴0.088%。针对该矿石的工艺矿物学特征,进行了不同药剂种类及用量的条件试验,确定了铜钴混合浮选-铜钴分离的工艺流程。闭路试验获得了含铜31.52%、铜回收率为92.32%、含钴0.232%的铜精矿和含钴2.12%、钴回收率67.56%、含铜1.48%的钴精矿的较好指标。  相似文献   

5.
针对铜冶炼企业含铜废镁砖难回收问题,提出了一种含铜废镁砖的综合利用工艺,以含铜废镁砖和废酸原液为原料,研究了最佳工艺条件。在最佳工艺条件下Mg O浸出脱除率达到97.3%,Cu、Au和Ag富集物达到铜精矿行业标准(YS/T 318-2007),Cu总回收率达到99.4%。实现废镁砖中有价资源的二次回收,达到经济效益最大化和以废治废的目的。  相似文献   

6.
对某含铜污泥进行了直接还原熔炼回收铜试验研究,探讨了熔剂石英石、石灰石、还原剂煤用量,以及熔炼温度和时间等对铜回收率的影响,同时进行了熔炼温度、熔炼时间和还原剂煤用量的L_9(3~4)正交试验研究,并对正交试验的最优组合进行对比验证与分析,得出该含铜污泥直接还原熔炼的最佳条件为熔炼时间80 min、还原剂煤用量4.5%、熔炼温度1310℃,在该条件下铜的回收率为93.89%,效果较理想。  相似文献   

7.
某厂以300 t固定式阳极炉冶炼高品位废杂铜,产出的炉渣含铜率较高,在25%~35%之间,因缺乏炉渣冶炼回收装置,只能将这些炉渣直接折价对外销售,导致冶炼生产中铜损失较大。为了降低冶炼炉渣的含铜率,在分析该厂原料杂质成分和含量的基础上,结合铜冶炼原理,选择合适的渣型,试验不同造渣剂在冶炼时对渣含铜率的控制情况,最终探索出一种有利于控制渣含铜率的复合造渣剂。在工业生产试验中,分别从渣型选择、氧化时间、渣温控制、保温时间、造渣剂配比等方面对生产操作工艺进行优化,最终实现了将渣含铜率控制在18%以下的目标,可大幅减少炉渣销售损失。  相似文献   

8.
为强化铜渣贫化回收渣含铜,设计了一种强化铜渣贫化的还原剂。采用HSC 6.0热力学软件计算对比了新型贫化剂与无烟煤、黄铁矿等常用贫化剂贫化熔炼渣回收铜锍的反应,并以某冶炼厂熔炼渣为原料进行试验并验证了新型贫化剂的强化作用。热力学计算结果表明,新型贫化剂还原铜渣(主要成分为Fe2SiO4和Fe3O4)的效果优于无烟煤和黄铁矿。试验结果表明,采用无烟煤、黄铁矿、新型贫化剂三种还原剂单独贫化回收渣含铜时,铜的回收率分别为30.83%、52.50%、66.67%。新型贫化剂能够强化回收渣含铜,有望为铜渣高效贫化并提高无烟煤等传统化石能源贫化铜渣利用率提供借鉴。  相似文献   

9.
江西铜业公司为寻找更多的铜和其它资源,受公司委托对国外某冶炼厂提供的少量水淬渣的物质组成、有用矿物的回收工艺进行探索性试验研究,试验研究结果表明:采用浮选方法能回收铜,回收率为64.44%;采用化学浸出的方法能回收钴和锌,其回收率分别达95.87%和97.63%,本文就该研究成果作简单的介绍.  相似文献   

10.
本文详细讨论了确保三菱连续铜熔炼和吹炼工艺产出的弃渣含铜较低的相关因素,重点讨论高效熔炼与渣贫化阶段,尤其是将渣中铜损失降至最低的那些重要的设计特点与生产实践。生产冰铜时,通常认为渣含铜直接与冰铜的品位有关。大多数其他冶炼工艺仅生产含铜30%~63%的冰铜,其中一些工艺要求进一步处理弃渣,以达到满意的铜回收率。相反,三菱工艺通常将冰铜品位控制在67%~69%范围,同时还能将弃渣中铜损失保持在0.6%左右。  相似文献   

11.
采用化学分析、X射线衍射、扫描电镜微观分析三种方法分析铜熔炼渣的基础物化性质;利用热力学计算软件对铜熔炼渣中所需回收金属化合物进行理论计算,使用100kW感应炉及碳化硅石墨坩埚进行10kg级铜熔炼渣综合回收有价金属试验。结果表明,铜熔炼渣中有91.06%的Cu以硫化物状态存在,在无烟煤配比10%、黄铁矿配比10%条件下,保温120min,获得尾渣中Cu、Pb、Zn含量分别为0.28%、0.013%、0.0062%;为搭配处理炼铜烟尘和更经济的综合回收,无烟煤配比3%、黄铁矿配比3%,搭配处理6%炼铜烟尘,保温70 min,实现尾渣中Cu、Pb、Zn含量分别为0.39%、0.049%、0.028%。  相似文献   

12.
摘要:火法炼铜过程中产生的铜渣含有较高的有价金属,结合前期实验研究,提出了利用铜渣、硫铁矿和增炭剂混合制备能消除沉降电炉炉结的铁硫合金的新方法。结合工业应用条件,控制碳的加入量使铜渣中的铁橄榄石还原成单质Fe和铁硅比为2:9的共晶体残渣,实现了渣与合金因密度和熔点差异自动分离。结合FeO-SiO2二元系相图,并利用XRD、XRF研究了最佳制备温度、保温时间、碳粒度、碳添加比对铁硫合金密度和残渣铁硅比的影响,分析了铜渣中Fe、Cu、Ni的回收效果。结果表明:最佳制备温度1350℃、保温时间30min、碳粒度小于96μm、碳添加比1:6,此时制备出的铁硫合金满足消除炉结要求,且残渣易分离;铜渣中Fe回收率为33.52%,Cu回收率为95.34%,Ni回收率为100%。  相似文献   

13.
郭培民 《中国钨业》2006,21(6):25-26
通过实验研究了白钨矿还原过程中炉渣泡沫化的形成规律。用碳化硅还原白钨矿,炉渣的泡沫化程度远小于碳粉还原白钨矿时的泡沫化程度。使用碳粉或碳化硅还原白钨矿时,随着合金化量的增加,炉渣的泡沫化程度提高。使用硅铁还原白钨矿,会降低炉渣的泡沫化程度。使用碳粉还原白钨矿时,渣中添加CaF2会加大炉渣泡沫化程度。  相似文献   

14.
反射炉炼铜渣综合利用技术研究   总被引:2,自引:1,他引:2  
在铜熔炼反射炉渣中铜铁赋存状态分析基础上,采用火法贫化和磁选技术对炉渣进行综合利用探索。此反射炉渣含1.06%Cu和36.41%Fe,其中32.5%的Fe以Fe3O4形式存在,53.5%的Fe以2FeO.S iO2形式存在,铜、铁、硅矿物紧密共生,相互交织。研究结果表明,转炉渣返回贫化作业会导致反射炉渣含铜较高,添加一定量黄铁矿精矿,采用火法贫化工艺能有效降低渣含铜。将贫化后铜渣脱硅缓冷、磁选,所得铁精矿品位62%,回收率达70.2%,实现了反射炉熔炼渣的综合利用,可用作炼铁原料。  相似文献   

15.
澳斯麦特熔炼渣回收铜实验研究   总被引:1,自引:1,他引:1  
韩伟  秦庆伟 《铜业工程》2012,(3):8-10,14
针对澳炉缓冷渣的性质特点,从炉渣冷却制度、磨矿细度、浮选药剂等方面考查了对选铜指标的影响,提出了最佳选铜技术条件。闭路试验表明,采用阶段磨矿阶段选别工艺,可获得铜精矿铜品位16.11%,回收率69.90%比较理想的技术指标。实现了澳炉炉渣的综合再利用,这对经济、社会和环境效益都具有十分重要的现实意义。  相似文献   

16.
从净液渣中回收铜的生产实践及其改进   总被引:1,自引:0,他引:1  
本文对湿法炼锌净液渣的综合回收铜的工艺流程选择、生产实践及其改进进行了介绍,经生产实践证明从净液渣中回收高附加值产品精镉和电铜是可行的.  相似文献   

17.
冰铜吹炼转炉渣中磁性铁(Fe3O4)的含量对电炉贫化弃渣含铜影响显著。为了降低返贫化电炉转炉渣中磁性铁的含量,本研究采用高温还原贫化法开展了实验室规模的转炉渣还原贫化试验研究,结果表明经还原预处理后Fe3O4的还原率达88%以上,还原后物料中Fe3O4含量低于5%。为创造弱还原气氛用于转炉渣的预处理,对60吨P-S转炉的烟气管路、固体还原剂及喷吹系统、燃烧保温系统等进行了改造,并进行工业生产实践。生产实践结果表明,渣含铜平均值由6.76%降至3.95%,实现了降低生产成本,减少金属损失的目的。  相似文献   

18.
The formation of silicon carbide from briquetted batch consisting of microsilica waste from silicon and silicon-alloy production is investigated. The batch is treated at 1873, 1923, and 1973 K, for 5–30 min, with various reducing agents: lignite semicoke, coal semicoke, coke breeze, and coke dust. The best results are obtained when using lignite semicoke from the Berezovsk deposit in Kansko-Achinsk Basin: the yield of silicon carbide is 97.00–97.62%; it constitutes 82.52–84.90% of the products obtained. The optimal treatment temperature and time are determined: 1923–1973 K for 15–20 min. The products consist predominantly of cubic silicon carbide (β SiC). Chemical enrichment increases the SiC content in the products to 90–91%; this is higher than in abrasive micropowder of grain size 1–2 μm. The effectiveness of enrichment in terms of oxide and iron impurities is high: 87–95%. The silicon carbide is characterized by a high silica content: more than 7%. Accordingly, it may be regarded as a promising material for the production of siliconcarbide refractories used in silica binder. Silicon carbide is obtained as micropowder with irregular particles in the size range 0.2–1.0 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号