首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《广州化工》2021,49(10)
利用化工模拟软件HYSYS建立C3/MRC工艺仿真模型,以现场运行参数对模型进行修正,在已建模型基础上,对其进行优化。以系统能耗为优化目标,制冷剂的压力以及制冷剂的组成配比为优化变量,建立优化模型,得到最优冷剂配比以及优化后各关键节点的相关参数。对比优化前后的参数,发现在当天然气液化率相同时,保证LNG产量不变及产品气品质达标的前提下,优化后混合制冷剂循环量降低了11.34%,LNG比功耗降低了14.72%,大大降低了系统能耗。  相似文献   

2.
概括介绍了LNG的关键技术——液化技术,详细介绍了当前主要的液化工艺,如丙醇预冷却混合制冷剂液化工艺(PPMR)、优化级联液化工艺(OCLP)和双混合制剂液化工艺(DMR)等。同时还介绍了建立LNG工厂时需考虑的其他关键问题,如换热器、压缩机、动力设备及其他设备的选择参考原则。  相似文献   

3.
小型撬装式LNG装置的流程模拟   总被引:10,自引:5,他引:5       下载免费PDF全文
为了使小型撬装式LNG(液化天然气)装置的流程研究具有普遍意义,通过对液化流程的评价,分别从混合制冷剂液化流程和膨胀机液化流程中选择了极具代表性、性能最佳的丙烷预冷混合制冷剂液化流程和N2-CH4膨胀机液化流程,并结合液化流程的发展趋势,综合多种液化流程的优点,提出了节能新型混合制冷剂液化流程,对以上液化流程进行了模拟计算,并比较了流程的关键参数.结果表明,节能新型混合制冷剂液化流程简便灵活、能耗低、液化率高,适应于小型撬装式LNG装置.  相似文献   

4.
为了降低天然气液化工厂中液化单元双循环混合制冷剂天然气液化流程(DMR)的功耗,文中采用化工过程模拟软件HYSYS建立了优化计算模型,该模型以系统最小功耗为目标函数,以混合制冷剂压力和配比为决策变量,选取了一种典型的天然气组分对DMR液化流程进行了优化模拟,得到了流程中各点的状态参数、最优操作参数和最优混合制冷剂配比。在优化过程中发现,优化的实质是:在满足各换热器最小温差情况下,通过对混合冷剂配比和流程参数的优化使各换热器内的平均换热温差尽可能减小。此外,在保证99.6%的高天然气液化率的情况下,文中得到流程的单位质量天然气的液化功耗为271 kW/t,液化■效率为45.4%,与国内现行的DMR流程功耗相比,能耗显著降低。  相似文献   

5.
利用HYSYS工艺模拟计算软件进行液化装置的物料和热量平衡。以某LNG液化装置为工程背景,根据原料气组分,建立不同液化工艺计算模型。分析制冷剂在不同压力和不同配比下的制冷曲线,确定最优的制冷剂技术。为天然气液化技术研究提供技术参考。  相似文献   

6.
赵杰 《化工中间体》2023,(24):174-176
为了探究液化天然气的制备工艺和储运方式,研究过程分析了当前主要的LNG液化路径,着重阐述了天然气预处理技术和混合制冷剂液化方法,具体内容包括天然气脱酸、脱水、脱汞以及单级混合冷剂循环法的实现原理。在LNG储运方面,将管道储运方式作为论述的对象,对比了非真空绝热管道和真空绝热管道的工程特点,探讨了影响LNG管道输送距离的因素,涵盖入口压力、输送量等。  相似文献   

7.
介绍了丙烷混合制冷循环液化天然气流程的原理,由于设备众多、流程复杂,提出了相关必要的约束条件。关键参数的选择对流程的可行性、压缩机耗功、原料天然气和混合制冷剂的流量及装置的技术经济性等关键指标尤为关键。重点考察混合制冷剂、原料天然气的组成对液化流程的影响,以比功耗作为目标函数来进行流程优化,以获取流程混合制冷剂的最优配比。  相似文献   

8.
撬装型混合制冷剂液化天然气流程的热力学分析   总被引:4,自引:2,他引:2       下载免费PDF全文
从热力学的角度出发,详细分析了撬装型混合制冷剂液化流程SP-MRC的关键参数对流程性能(包括比功耗、液化率、比制冷剂流量和比冷却水负荷)的影响。这些关键参数包括:分离器S1和S2的温度;高压制冷剂和低压制冷剂的压力;天然气的入口压力和LNG的储存压力;天然气的组分;混合制冷剂的组分。  相似文献   

9.
混合制冷剂循环液化天然气因具有流程简单、成本少等优势,在天然气液化工艺中广泛使用。本文主要通过目标函数、约束条件、最优值及对应的流程参数值,分析和讨论优化混合制冷剂循环液化天然气的流程,并通过优化换热系统,降低工艺系统的能耗,从而提高混合制冷剂循环液化天然气流程的制作工艺。  相似文献   

10.
李彩云  王晓军 《广东化工》2014,41(21):100-101
与级联式、丙烷预冷液化流程相比,双循环混合制冷剂液化流程在功率消耗、生产率等方面有了更明显的改善,使液化循环更高效、能耗更低。文章对双循环混合制冷剂液化流程用HYSYS软件进行模拟,针对天然气和混合制冷剂的物性特点,选用P-R方程作为计算这两类混合物的状态方程,并分析不同组分配比、天然气压力及预冷温度等对冷剂循环量、压缩机功耗、液化率等的影响。  相似文献   

11.
单循环混合制冷剂流程(SMR)在中小型液化天然气(LNG)的生产中应用广泛,其效率取决于混合制冷剂参数。用HYSYS模拟SMR流程,并与MATLAB取得连接,运行粒子群算法(PSO)优化制冷剂组分的摩尔分数、流量以及压力,将流程效率提升了23.5%。基于最优解,对制冷剂各组分进行敏感度分析,找到了各组分对换热器不同温区冷热流温差的影响规律,对实际生产中制冷剂组分的调节具有指导意义。  相似文献   

12.
王辉  陈福胜  宋琦  任彬  王勤  陈光明 《化工学报》2015,66(Z2):231-237
本文提出了一种新型精馏型自复叠小型天然气液化系统,并采用HYSYS®软件对其进行了性能模拟计算和优化分析,详细分析了组分配比和系统压力位对系统性能的影响规律。研究结果表明:对于不同组分配比的混合制冷剂,当吸气压力上升时,天然气液化量的变化趋势则可分为向下凹和变化不大两种类型,其对应的系统单位液化功的变化趋势可分为向上凸和单调减少两种类型,压缩机功率和排气温度则基本上呈单调降低趋势,并以系统单位液化功为目标优化,得到了最佳配比和最佳工况。  相似文献   

13.
国内油气资源分散、单井产量小,边远地区的油气资源较丰富,可以利用小型液化天然气装置制成LNG后外输,同时小型天然气膨胀液化工艺又是我国LNG研究工作的重点。利用Aspen Hysys软件对N2-CH4膨胀制冷液化流程进行模拟、研究和分析,得出影响该流程的主要参数:制冷剂高压压力、主换热器出口温度、制冷剂氮气含量、天然气进料压力和LNG储存压力对液化率和比功耗的影响。  相似文献   

14.
混合冷剂天然气液化工艺是常用的天然气液化工艺流程,我国 LNG 技术起步较晚,仍缺乏对于该流程的优化设计和模拟计算研究。针对进厂原料天然气组分在不同温度、压力下进行液化率计算,筛选配比冷剂组成,完成了闭式冷剂天然气液化工艺的模拟,实现了进厂天然气的净化和液化,并计算分析了冷剂压缩前后压力和 LNG 产品储存压力对收率和能耗的影响。  相似文献   

15.
蒋鹏  诸林  范峻铭 《当代化工》2014,(1):132-134
利用HYSYS对小型N2-CH4膨胀机天然气液化流程进行模拟,分析关键参数对流程性能(比功耗、液化率)的影响。结果显示:降低制冷剂高压压力、LNG储存压力、制冷剂中甲烷含量和提高制冷剂低压压力、天然气入口压力,有利于减少比功耗;提高制冷剂高压压力、LNG储存压力、制冷剂中甲烷含量和降低制冷剂低压压力、天然气入口压力,有利于提高天然气液化率。  相似文献   

16.
带丙烷预冷的混合制冷剂液化天然气工艺具有流程简单、效率高、运行费用低、适应性强等优点,因而得到广泛应用。利用流程模拟软件HYSYS对带丙烷预冷的混合制冷剂液化工艺进行了模拟,给出了流程中涉及到的主要物流参数,并通过改变天然气进料压力、高压制冷剂压力、低压制冷剂压力等参数分析了其对流程工艺液化率及功耗的影响。  相似文献   

17.
液化天然气(LNG)是将天然气压缩后,在混合制冷剂的作用下,得到的-162℃液化形式的天然气。经过上述液化过程,使天然气的体积缩小了600倍。LNG作为比石油更安全、更洁净的能源受到各国关注。随着经济的发展,我国对能源的需求和重视程度与日俱增,对天然气的需求量也大大增加,而国内的供应  相似文献   

18.
通过对氮气膨胀制冷天然气液化工艺进行模拟和分析,得到各关键参数对该液化系统的液化率和比功率的变化情况:随着原料气压力增大,液化率和比功率分别呈近线性增大和减小,原料气温度的影响与之相反;制冷剂高压压力增加或制冷剂低压压力减小时,液化率均呈现上升趋势,但上升幅度有所减小;比功率呈先减小后增大势态,即存在一个低点使得比功率最小。合理选择制冷剂高压压力和制冷剂低压压力具有优化价值;循环制冷剂温度或LNG储存压力升高,液化率线性增大,比功率显著降低。  相似文献   

19.
液化天然气具有燃烧热值高、污染少,便于运输,储存效率高等特点。天然气液化已形成一门高科技技术,普遍应用于液化天然气工业化生产中。总结介绍了几种LNG液化流程(级联式液化流程、混合制冷剂液化流程、带膨胀机的液化流程)的工艺特点及优缺点,并概述了各流程的的发展及现场运用情况。  相似文献   

20.
混合制冷剂(MR)组分是影响天然气液化流程性能的最重要因素之一。在某些特定的液化天然气(LNG)装置中,丁烷和戊烷等重组分不受欢迎。研究了以下4种混合制冷剂组分用于单混合制冷剂(SMR)流程的效果:含有异丁烷(C4)和异戊烷(C5)的MR;不含C4的MR;不含C5的MR;不含C4和C5的MR。对各流程的比功耗进行了对比。结果表明,相比于异丁烷,异戊烷对降低能耗的贡献更大;另外,工况1的能耗比工况4低18%。更进一步地,提出了采用不同制冷剂进行预冷的SMR流程。对于工况4,采用丙烷预冷的流程能耗可降低12%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号