首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin transfer switching current distribution within a cell and switching current reduction were studied at room temperature for magnetic tunnel junction-based structures with resistance area product (RA) ranged from 10 to 30 /spl Omega/-/spl mu/m/sup 2/ and TMR of 15%-30%. These were patterned into current perpendicular to plane configured nanopillars having elliptical cross sections of area /spl sim/0.02 /spl mu/m/sup 2/. The width of the critical current distribution (sigma/average of distribution), measured using 30 ms current pulse, was found to be 3% for cells with thermal factor (KuV/k/sub B/T) of 65. An analytical expression for probability density function p(I/I/sub c0/) was derived considering a thermally activated spin transfer model, which supports the experimental observation that the thermal factor is the most significant parameter in determining the within-cell critical current distribution. Spin-transfer switching current reduction was investigated through enhancing effective spin polarization factor /spl eta//sub eff/ in magnetic tunnel junction-based dual spin filter (DSF) structures. The intrinsic switching current density (J/sub c0/) was estimated by extrapolating experimental data of critical current density (J/sub c/) versus pulse width (/spl tau/), to a pulse width of 1 ns. A reduction in intrinsic switching current density for a dual spin filter (DSF: Ta/PtMn/CoFe/Ru/CoFeB/Al2O3/CoFeB/spacer/CoFe/PtMn/Ta) was observed compared to single magnetic tunnel junctions (MTJ: Ta/PtMn/CoFe/Ru/CoFeB/Al2O3/CoFeB/Ta). J/sub c/ at /spl tau/ of 1 ns (/spl sim/J/sub c0/) for the MTJ and DSF samples were 7/spl times/10/sup 6/ and 2.2/spl times/10/sup 6/ A/cm/sup 2/, respectively, for identical free layers. Thus, a significant enhancement of the spin transfer switching efficiency is seen for DSF structure compared to the single MTJ case.  相似文献   

2.
Dependence of spin torque induced magnetization switching upon interfacial insulating layers properties of magnetic tunneling junctions (MTJ) are studied. For the same magnetic properties and patterning geometric dimensions, changes in MTJ interfacial insulating layers properties reveal interesting magnetization switching behaviors. These behaviors cannot be explained by conventional Landau-Lifshitz-Gilbert equation with a spin torque term and an intrinsic ferromagnetic relaxation damping. However the magnetization switching dynamics can be understood through assumption of spin pumping effects in magnetic tunneling junctions. This is not only important for fundamental understanding of spin and electronic transport in MTJ but also important for practical trade-offs between critical switching current and MTJ resistance for spin torque random access memory.  相似文献   

3.
We have investigated the effect of Ar pressure during MgO sputtering on the tunnel magnetoresistance (TMR) and resistance area (RA) product of CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs). The TMR of MTJs with a thin MgO tunnel barrier deposited at different Ar pressures (1.3, 4, 10, and 25 mTorr) shows a consistent relationship with x-ray diffraction (XRD) properties of thick MgO films deposited with the same conditions. The deposition of the MgO-barrier at 1.3 mTorr results in a low TMR ratio and a high RA product due to the disordered MgO barrier and the oxidation of the bottom electrode of the MTJ, while the deposition at 25 mTorr results in a rough MgO barrier, and thereby gives rise to a large shift of switching field of the free layer due to the orange-peel coupling.   相似文献   

4.
High tunneling magnetoresistance (TMR) ratio and low RA in magnetic tunnel junctions are necessary condition for application in magnetic random access memory. To get high TMR ratio and low RA, good quality of MgO (002) insulating layer is important. To increase crystalline quality of MgO (002) layer, we applied negative bias on the substrate during MgO deposition. We report the results of the tunneling magnetoresistance (TMR) ratio and the resistance-area product (RA) for CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) with substrate bias voltage, and showed TMR increase and RA decrease with substrate bias. The effects of substrate bias voltage on the TMR ratio, RA and MgO (002) peak intensity are discussed.   相似文献   

5.
Magnetization dynamics and field dependent magnetization of different devices based on 25-30 nm thick Permalloy (Py) films: such as single Py layers (Py/MgO; Py/CoFeB/Al2O3) and Py inserted as a magnetic layer in magnetic tunnel junctions (Py/CoFe/Al2O3/CoFe; Py/CoFeB/Al2O3/CoFe; Py/MgO/Fe) have been extensively studied within a temperature range between 300 K down to 5 K. The dynamic response was investigated in the linear regime measuring the ferromagnetic resonance response of the Py layers using broadband vector network analyzer technique. Both the static and the dynamic properties suggest the possible presence of a thermally induced spin reorientation transition in the Py interface at temperatures around 60 K in all the samples investigated. It seems, however, that the details of the interface between Py and the hardening ferromagnet/insulator structure, the atomic structure of Py layers (amorphous vs. textured) as well as the presence of dipolar coupling through the insulating barrier in the magnetic tunnel junction structures could strongly influence this low temperature reorientation transition. Our conclusions are indirectly supported by structural characterization of the samples by means of X-Ray diffraction and high resolution transmission electron microscopy techniques. Micromagnetic simulations indicate the possibility of strongly enhanced surface anisotropy in thin Py films over CoFe or CoFeB underlayers. Comparison of the simulations with experimental results also shows that the thermally-induced spin reorientation transition could be influenced by the presence of strong disorder at the surface.  相似文献   

6.
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1?×?10(6)?A?cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ~1?×?10(4)?A?cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.  相似文献   

7.
We report on the magneto-transport measurements of MgO magnetic tunnel junctions (MTJs) composed of NiFeSiB/CoFeB as the free layer for two different structures (top-type and bottom-type pinning). The magneto-transport properties of these MTJs were investigated by varying the thickness of the amorphous NiFeSiB layer for a fixed CoFeB thickness. The tunnel magnetoresistance (TMR), measured in both type of structures, exhibit the same or a higher amplitude (up to 230% measured at room temperature in the case of top-type device), comparing to the case of a single CoFeB free layer. These results suggest that hybrids free layers can be used as good candidates for MTJs with reduced saturation magnetization while keeping a high TMR ratio.   相似文献   

8.
We discuss recent highlights from research at Cornell University, Ithaca, New York, regarding the use of spin-transfer torques to control magnetic moments in nanoscale ferromagnetic devices. We highlight progress on reducing the critical currents necessary to produce spin-torque-driven magnetic switching, quantitative measurements of the magnitude and direction of the spin torque in magnetic tunnel junctions, and single-shot measurements of the magnetic dynamics generated during thermally assisted spin-torque switching.  相似文献   

9.
Current-induced magnetization switching by spin–orbit torque (SOT) holds considerable promise for next generation ultralow-power memory and logic applications. In most cases, generation of spin–orbit torques has relied on an external injection of out-of-plane spin currents into the magnetic layer, while an external magnetic field along the electric current direction is generally required for realizing deterministic switching by SOT. Here, deterministic current-induced SOT full magnetization switching by lateral spin–orbit torque in zero external magnetic field is reported. The Pt/Co/Pt magnetic structure is locally annealed by a laser track along the in-plane current direction, resulting in a lateral Pt gradient within the ferromagnetic layer, as confirmed by microstructure and chemical composition analysis. In zero magnetic field, the direction of the deterministic current-induced magnetization switching depends on the location of the laser track, but shows no dependence on the net polarization of external out-of-plane spin currents. From the behavior under external magnetic fields, two independent mechanisms giving rise to SOT are identified, i.e., the lateral Pt–Co asymmetry as well as out-of-plane injected spin currents, where the polarization and the magnitude of the SOT in the former case depends on the relative location and the laser power of the annealing track.  相似文献   

10.
Spin-polarized transport in ferromagnetic tunnel junctions, characterized by tunnel magnetoresistance, has already been proven to have great potential for application in the field of spintronics and in magnetic random access memories. Until recently, in such a junction the insulating barrier played only a passive role, namely to facilitate electron tunnelling between the ferromagnetic electrodes. However, new possibilities emerged when ferroelectric materials were used for the insulating barrier, as these possess a permanent dielectric polarization switchable between two stable states. Adding to the two different magnetization alignments of the electrode, four non-volatile states are therefore possible in such multiferroic tunnel junctions. Here, we show that owing to the coupling between magnetization and ferroelectric polarization at the interface between the electrode and barrier of a multiferroic tunnel junction, the spin polarization of the tunnelling electrons can be reversibly and remanently inverted by switching the ferroelectric polarization of the barrier. Selecting the spin direction of the tunnelling electrons by short electric pulses in the nanosecond range rather than by an applied magnetic field enables new possibilities for spin control in spintronic devices.  相似文献   

11.
Current induced magnetic reversal due to spin transfer torque is a promising candidate in advanced information storage technology. It has been intensively studied. This work reports the field-dependence of switching-currents for current induced magnetization switching in a uncoupled nano-sized cobalt-based spin valve of exchange biased type. The dependency is investigated in hysteretic regime at room temperature, in comparison with that of a trilayer simple spin valve. In the simple spin valve, the switching currents behave to the positive and the negative applied magnetic field symmetrically. In the exchange biased type, in contrast, the switching currents respond to the negative field in a quite unusual and different manner than to the positive field. A negative magnetic field then can shift the switching-currents into either negative or positive current range, dependently on whether a parallel or an antiparallel state of the spin valve was produced by that field. This different character of switching currents in the negative field range can be explained by the effect of the exchange bias pinning field on the spin-polarizer (the fixed Co layer) of the exchange biased spin valve. That unidirectional pinning filed could suppress the thermal magnetization fluctuation in the spin-polarizer, leading to a higher spin polarization of the current, and hence a lower switching current density than in the simple spin valve.  相似文献   

12.
A relationship between boron (B) diffusion into the MgO barrier and pinhole creation in CoFeB/MgO/CoFeB-magnetic tunnel junctions (MTJs) was investigated. The diffused B in the MgO layer was identified by secondary ion mass spectrometry for the MTJs annealed at 350degC , which provide the giant magnetoresistance (TMR) ratio. The pinhole density, estimated from the statistic distribution of breakdown voltage of the TMR properties, increased as either the thickness or the B content of the CoFeB layer became thicker or higher. These experimental findings imply that the diffused B into the MgO barrier creates pinholes to short-circuit the tunnel conduction, since the amount of diffused B into the MgO barrier might be related to the total amount of the B content in the CoFeB layer. Three different techniques were found to be useful for the reduction of diffused B into the MgO barrier layer; usage of materials having boron affinity for capping layer, decrease of the total amount of B-content in CoFeB layer, and reduction of grain boundaries in the MgO barrier layer.  相似文献   

13.
We studied the magnetic and magnetoresistance characteristics of pseudospin-valve magnetic tunnel junctions (MTJs) based on CoFe/Pd multilayer electrodes with perpendicular magnetic anisotropy and an MgO barrier. The MTJs at annealing temperature (T a) of 473 K showed a tunnel-magnetoresistance (TMR) ratio of 1.5%. An fcc (111)-oriented texture of the bottom and top Co90Fe10/Pd multilayer electrodes, together with an imperfectly crystallized MgO, were revealed by cross-sectional TEM images. The TMR properties of perpendicular MTJs with a Co20Fe60B20 or Co50Fe50 layer inserted between the CoFe/Pd multilayer electrodes and the MgO barrier were also studied. The TMR ratio with Co20Fe60B20 insertion was 1.7% at T a= 473 K and monotonically decreased at T a over 523 K. The TMR ratio with Co50Fe50 insertion increased up to 3% at T a= 573 K and then decreased to 0.4% at T a= 598 K. The influence of the Pd layer on CoFeB was studied by using the simplified structures of Pd/CoFeB/MgO/CoFeB/Pd and Ta/CoFeB/MgO/CoFeB/Ta with inplane anisotropy. A former structure with Pd resulted in reduced TMR ratio which decreases with increasing T a, whereas MTJs with a Ta-based structure showed a monotonic increase of a TMR ratio. The low TMR ratio observed in Pd-containing structures appears to result from crystallization of CoFeB in an unfavorable crystal orientation.  相似文献   

14.
Efficient control and detection of spins are the most important tasks in spintronics. The current and voltage applied to a magnetic tunnel junction may exert a torque on the magnetic thin layer in the junction and cause its reversal or continuous precession. The discovery of the giant tunnelling magnetoresistance effect in ferromagnetic tunnelling junctions using an MgO barrier enabled us to obtain a large signal output from the magnetization reversal and precession. Also, the interplay of large spin configuration-electric conduction coupling provides highly nonlinear effects like the spin-torque diode effect. The negative resistance effect and amplification using it are predicted. A new discovery about a voltage-induced magnetic anisotropy change in Fe ultrathin films is also discussed.  相似文献   

15.
La0.7Sr0.3MnO3 is predicted to show half-metallic behaviour at low temperature, which gives rise to a metallic character for one spin direction and an insulating character for the other. This 100% polarisation of the conduction band should enhance the spin dependent tunnelling in manganite-based tunnel junctions. La0.7Sr0.3MnO3/SrTiO3 epitaxial superlattices were grown on LaAlO3(001) substrates by metal–organic chemical vapour deposition (MOCVD). These multilayers consist of 15 epitaxial bilayers of La0.7Sr0.3MnO3 and SrTiO3. The junctions were patterned using UV lithography and Ar ion milling to carry out transport measurements in the current perpendicular-to-plane geometry (CPP). A temperature-independent non-linear IV curve, which is characteristic of a tunnelling conduction mechanism, was observed below 50 K. At higher temperatures, the IV curves are found to become linear and temperature-dependent. Up to 30 K, a constant tunnel magnetoresistance (TMR) (3%) is measured. The switching field is consistent with the film coercive field (a few 10s of mT). At higher temperatures, the TMR decreases rapidly. This temperature dependence is compared to the expected behaviour of a spin tunnel junction with half-metallic electrodes, with thermal activation or the loss of spin polarisation taken into account.  相似文献   

16.
Great interest in current-induced magnetic excitation and switching in a magnetic nanopillar has been caused by the theoretical predictions of these phenomena. The concept of using a spin-polarized current to switch the magnetization orientation of a magnetic layer provides a possible way to realize future 'current-driven' devices: in such devices, direct switching of the magnetic memory bits would be produced by a local current application, instead of by a magnetic field generated by attached wires. Until now, all the reported work on current-induced magnetization switching has been concentrated on a simple ferromagnet/Cu/ferromagnet trilayer. Here we report the observation of current-induced magnetization switching in exchange-biased spin valves (ESPVs) at room temperature. The ESPVs clearly show current-induced magnetization switching behaviour under a sweeping direct current with a very high density. We show that insertion of a ruthenium layer between an ESPV nanopillar and the top electrode effectively decreases the critical current density from about 10(8) to 10(7) A cm(-2). In a well-designed 'antisymmetric' ESPV structure, this critical current density can be further reduced to 2 x 10(6) A cm(-2). We believe that the substantial reduction of critical current could make it possible for current-induced magnetization switching to be directly applied in spintronic devices, such as magnetic random-access memory.  相似文献   

17.
We study the quasi-static and dynamical switching of magnetic tunnel junction patterned in micron-sized cells with integrated field pulse line. The tunnel junctions are CoFe/AlO/CoFe with an exchange biasing layer of MnIr. Quasi-static characterizations have been used to determine anisotropy, coercive as well as exchange bias fields. Dynamic switching measurements are done by applying fast-rising magnetic field pulses (178 ps–10 ns) along the hard axis of the junction with a quasi-static easy-axis applied field. We identify the field conditions leading to no-switching, to direct-writing and to toggle switching. We identify these field conditions up to the precessional limit, and construct the experimental dynamical astroïd. The magnetization trajectories leading to direct-writing and to toggle switching are well described by macrospin simulations.  相似文献   

18.
We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.  相似文献   

19.
Magnetization switching dynamics in a spin valve nanopillar, induced by spin transfer torque in the presence of a periodic applied field is investigated by solving the Landau–Lifshitz–Gilbert–Slonczewski equation. Under steady state conditions, the switching of magnetization occurs in the system, above a threshold current density value J c. A general expression for the critical current density is derived and it is shown that this further reduces when there is magnetic interface anisotropy present in the free layer of the spin valve. We also investigated the chaotic behavior of the free layer magnetization vector in a periodically varying applied magnetic field, in the presence of a constant DC magnetic field and spin current. Further, it is found that in the presence of a nonzero interfacial anisotropy, chaotic behavior is observed even at much smaller values of the spin current and DC applied field.  相似文献   

20.
Current-induced magnetization switching (CIMS) was demonstrated in low resistance magnetic tunnel junctions (MTJs) with thin MgO [001] barrier. The resistance change by CIMS was more than 100%, which is much larger than the previous report in Al-O based MTJs. The switching current density was about 2/spl times/10/sup 7/ A/cm/sup 2/, which was comparable with that reported values in metallic multilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号