共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
车牌识别系统包括图像预处理、车牌定位与提取、字符分割和字符识别等几大模块。对这些关键技术、算法进行了研究,分析了现有方案的优缺点,结合我国车牌的特点与系统的实际应用,对一些关键技术进行了优化,提出了相应的解决方案,并实现了车牌自动识别系统。 相似文献
3.
讨论了数字图像处理在车牌识别中所使用的各种技术,对于车牌边缘检测和车牌字符分割等关键处理技术进行了较为详细的论述。 相似文献
4.
本文提出了一种基于灰度图像的车牌识别系统。车牌识别系统主要包括车牌定位和字符识别。为了快速准确地进行车牌定位,本文提出了一种基于字符连接特征的定位算法。在识别系统中,我们采用了一种二次字符识别的算法。 相似文献
5.
郭晓 《电脑编程技巧与维护》2023,(1):113-115
车牌识别系统在现代化交通道路体系中应用广泛,主要应用在高速公路的电子测速、交通路口的违章监控等场景,对于实现交通智能化管理、维护社会稳定具有重要的意义。设计了一种基于Matlab的车牌识别系统,以某小区车库车辆识别系统拍摄的车辆照片为基础,解决了字符分割中两个字符投影连接无法分割的问题和字符“1”与“I”投影宽度较小致尺寸调整异常的问题,该系统算法简单实用,可以快速、准确地对蓝色车牌进行识别。 相似文献
6.
完整的车牌识别系统由车牌定位、字符分割和字符识别三部分组成,针对车牌定位和字符分割两项核心技术,对传统算法进行了改进,提出了一种新的车牌定位和字符分割的算法,解决了传统算法易受噪声干扰且识别率不高的问题.该算法利用颜色特征和边缘检测技术实现对车牌的精准定位,并利用倾斜校正和垂直扫描技术实现了对字符的分割,最后结合神经网... 相似文献
7.
郑雪 《数字社区&智能家居》2014,(19):4541-4543,4549
针对智能交通管理系统中的车牌识别问题,提出应用图像处理技术对汽车的牌照进行识别。车牌定位(LPL,License Plate Location)、车牌分割(LPS,License Plate Segmentation)、车牌识别(LPR,License Plate Recognition)是实现车牌识别系统的最主要的三个部分。先采用HSV模型和RGB模型识别与分割彩色图像,并初步定位车牌图像;再采用radon变换实现车牌的倾斜校正,用投影法对车牌进行定位和分割;最后通过语音读出识别到的车牌信息。通过MATLAB编程进行实验仿真,结果表明利用图像处理技术能够快速地识别出汽车牌照,是一种研究车牌识别的有效方法。 相似文献
8.
基于VC^++的车牌识别系统关键技术研究 总被引:9,自引:0,他引:9
车辆牌照识别(LPR)系统是一个专用的计算机视觉系统,LPR系统的广泛应用将有助于加快我国交通管理自动化的进程。本文对车牌识别系统中的图像预处理、车牌定位、字符分割和字符识别等环节涉及到的技术、算法以及系统整体设计作了全面的论述,并与已有方案进行了比较,对部分关键算法进行了设计和改进。用采集到的40多幅汽车图片作为实验样本数据,用纯软件的方法实现了车牌字符的自动识别。 相似文献
9.
郑雪 《数字社区&智能家居》2014,(7):4541-4543
针对智能交通管理系统中的车牌识别问题,提出应用图像处理技术对汽车的牌照进行识别。车牌定位(LPL,License Plate Location)、车牌分割(LPS,License Plate Segmentation)、车牌识别(LPR,License Plate Recognition)是实现车牌识别系统的最主要的三个部分。先采用HSV模型和RGB模型识别与分割彩色图像,并初步定位车牌图像;再采用radon变换实现车牌的倾斜校正,用投影法对车牌进行定位和分割;最后通过语音读出识别到的车牌信息。通过MATLAB编程进行实验仿真,结果表明利用图像处理技术能够快速地识别出汽车牌照,是一种研究车牌识别的有效方法。 相似文献
10.
11.
优化识别车牌识别问题,由于图像中的环境背景受到天气、照明等因素的影响,车牌定位不清。为解决上述问题,提出了一种结合车牌图像自身几何特征的数学形态学车牌识别系统的方法。首先应用直方图的灰度增强和局部阈值算法对车牌图像进行的预处理,通过对比采用梯度算子Roberts对图像进行有效的边沿检测,再根据提出的几何特征形态学车牌定位识别方法对灰度车牌图像进行车牌区域精确定位,采用模板匹配和神经网络方法实现字符识别。通过对实际场景中车牌图像样本进行仿真,证明了上述方法的有效性,且借助于实时性好的LabVIEW平台,较好地实现车牌识别定位优化问题,为实际交通管理提供了依据。 相似文献
12.
基于小波变换和神经网络的车牌识别系统 总被引:6,自引:0,他引:6
介绍了通过小波变换在复杂背景下对车辆图像进行去噪和对车辆牌照进行定位,并利用BP网络结合线性感知器来对车牌字符进行分类和识别。实验结果表明,该文提出的设计方案,算法简单、实时性好、识别率高,可适用于复杂背景环境中的车牌识别。 相似文献
13.
针对实际车牌识别系统中车牌位置定位难、字符识别率低等问题,提出了一种基于MSER与SVM算法的车牌定位识别。该方法分为定位和识别两步,输入图像经过预处理,通过MSER与SVM算法直接提取出车牌的字符区域,然后将车牌字符图像裁剪送入识别阶段,识别阶段同样利用SVM算法对车牌字符进行识别。经验证,该车牌定位识别方法识别速度快、准确率高,能够适用于实际生活中较为复杂的交通环境。 相似文献
14.
A full-fledged image-based car license plate recognition (CLPR) system is described in the paper. CLPR provides an inexpensive automatic solution for remote vehicle identification. Gray-level input images are assumed. The localization stage of the CLPR yields a plate clip followed by character segmentation and recognition. The recognition scheme combines adaptive iterative thresholding with a template-matching algorithm. The method is invariant to illumination and is robust to character size and thickness, skew and small character breaks. Promising results have been obtained in the experiments with Israeli and Bulgarian license plates including images of poor quality. Also, the possibility of using an “off-the-shelf” OCR has been explored. 相似文献
15.
一种基于BP神经网络的车牌字符分类识别方法 总被引:8,自引:0,他引:8
目前,车牌字符识别算法主要是基于模板匹配、特征匹配或神经网络的方法。本文根据车牌字符的特殊性,提出一种采用特征提取与BP神经网络学习算法相结合的分类识别技术,选取字符的粗网格特征作为字符的识别特征,以改进后的归一化字符原始特征直接输入到BP神经网络分类器中进行车牌字符识别研究。对于易混淆和相似的字符、汉字笔划粘连、字符偏移现象等都提出了自己的解决方法。实验结果说明,本方法可大幅提高车牌识别系统的正确识别率和抗干扰能力。 相似文献
16.
复杂场景下的高精度车牌识别仍然存在着许多挑战, 除了光照、分辨率不可控和运动模糊等因素导致的车牌图像质量低之外, 还包括车牌品类多样产生的行数不一和字数不一等困难, 以及因拍摄角度多样出现的大倾角等问题. 针对这些挑战, 提出了一种基于单字符注意力的场景鲁棒的高精度车牌识别算法, 在无单字符位置标签信息的情况下, 使用注意力机制对车牌全局特征图进行单字符级特征分割, 以处理多品类车牌和倾斜车牌中的二维字符布局问题. 另外, 该算法通过使用共享参数的多分支结构代替现有算法的串行解码结构, 降低了分类头参数量并实现了并行化推理. 实验结果表明, 该算法在公开车牌数据集上实现了超越现有算法的精度, 同时具有较快的识别速度. 相似文献
17.
针对车牌中汉字识别率低和识别速度慢问题,提出一种基于深度学习的车牌识别网络LeNet-5-L,该网络把车牌识别分为两个阶段,运用OpenCV库函数对车牌图像预处理,结合垂直投影分割方法将车牌分割为7个独立字符图像,降低了图像特征提取难度,从而提高车牌中各个的字符识别率和整个车牌识别速度;运用卷积神经网络解决车牌字符识别问题,基于LeNet-L设计一种车牌字符识别网络LeNet-5-L,有效提高车牌中首字符汉字识别率;实验结果表明,该网络对车牌中各个字符的识别准确率均高于99.97%,单个车牌识别时间仅需0.83 ms,该方法有效的提高车牌识别的正确率和识别速度. 相似文献
18.
针对汽车牌照识别系统中图像的采集和定位问题,设计了一种行驶车辆图像获取的自适应控制系统,很好地解决了车牌识别系统的全天候问题;并且利用纹理分析和灰度图像垂直投影相结合的方法,成功地解决了传统车牌图像定位手段很难解决的几个难题,在此过程中还涉及了车牌图像的几种预处理手段:车牌图像的灰度校正、增强和锐化;最后的定位结果验证了该定位算法的有效性和精确性. 相似文献