首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, closed-form expressions for capacities per unit bandwidth for fading channels with impairments due to Branch Correlation are derived for optimal power and rate adaptation, constant transmit power, channel inversion with fixed rate, and truncated channel inversion policies for maximal ratio combining diversity reception case. Closed-form expressions for system spectrum efficiency when employing different adaptation policies are derived. Analytical results show accurately that optimal power and rate adaptation policy provides the highest capacity over other adaptation policies. In the case of errors due to branch correlation, optimal power and rate adaptation policy provides the best results. All adaptation policies suffer no improvement in channel capacity as the branch correlation is increased. This fact is verified using various plots for different policies. With increase in branch correlation, capacity gains are significantly larger for optimal power and rate adaptation policy as compared to the other policies. The outage probability for branch correlation is also derived and analyzed using plots for the same.  相似文献   

2.
We present an analysis of a hybrid selection/maximal-ratio combining diversity system over an evenly correlated slow frequency-nonselective Nakagami fading channel, where the correlation coefficient between any pair of the diversity branch gain amplitudes is the same, and all average branch signal-to-noise ratios (SNRs) are equal. In this system, the L branches with the largest instantaneous SNR out of N available branches are selected and combined using maximal-ratio combining. From the joint characteristic function (cf) of the instantaneous branch SNRs, we obtain an expression for the cf of the combiner output SNR as a series of elementary cfs. The expression can be conveniently used to obtain the symbol error probability of coherent detection of different M-ary modulation schemes. We illustrate our methodology using M-ary phase-shift keying as an example.  相似文献   

3.
We study the Shannon capacity of adaptive transmission techniques in conjunction with diversity-combining. This capacity provides an upper bound on spectral efficiency using these techniques. We obtain closed-form solutions for the Rayleigh fading channel capacity under three adaptive policies: optimal power and rate adaptation, constant power with optimal rate adaptation, and channel inversion with fixed rate. Optimal power and rate adaptation yields a small increase in capacity over just rate adaptation, and this increase diminishes as the average received carrier-to-noise ratio (CNR) or the number of diversity branches increases. Channel inversion suffers the largest capacity penalty relative to the optimal technique, however, the penalty diminishes with increased diversity. Although diversity yields large capacity gains for all the techniques, the gain is most pronounced with channel inversion. For example, the capacity using channel inversion with two-branch diversity exceeds that of a single-branch system using optimal rate and power adaptation. Since channel inversion is the least complex scheme to implement, there is a tradeoff between complexity and capacity for the various adaptation methods and diversity-combining techniques  相似文献   

4.
The spectral efficiency results for different adaptive transmission schemes over correlated diversity branches with unequal average signal to noise ratio (SNR) obtained so far in literature are not applicable for Nakagami-0.5 fading channels. In this paper, we investigate the effect of fade correlation and level of imbalance in the branch average received SNR on the spectral efficiency of Nakagami-0.5 fading channels in conjunction with dual-branch selection combining (SC). This paper derived the expressions for the spectral efficiency over correlated Nakagami-0.5 fading channels with unequal average received SNR. This spectral efficiency is evaluated under different adaptive transmission schemes using dual-branch SC diversity scheme. The corresponding expressions for Nakagami-0.5 fading are considered to be the expressions under worst fading conditions. Finally, numerical results are provided to illustrate the spectral efficiency degradation due to channel correlation and unequal average received SNR between the different combined branches under different adaptive transmission schemes. It has been observed that optimal simultaneous power and rate adaptation (OPRA) scheme provides improved spectral efficiency as compared to truncated channel inversion with fixed rate (TIFR) and optimal rate adaptation with constant transmit power (ORA) schemes under worst case fading scenario. It is very interesting to observe that TIFR scheme is always a better choice over ORA scheme under correlated Nakagami-0.5 fading channels with unequal average received SNR.  相似文献   

5.
Minimum selection GSC in independent Rayleigh fading   总被引:1,自引:0,他引:1  
We analyze the error performance of minimum selection generalized selection combining (MS-GSC), in which the minimum number of diversity branches are selected such that their combined signal-to-noise ratio (SNR) is above a given threshold. A flat Rayleigh fading channel with independent and distinctly distributed branch SNRs is considered. By transforming the ordered instantaneous branch SNRs to their differences, we derive the distribution of the number of selected branches in closed form. We then modify the derivation of this distribution to get the characteristic function (cf.) of the combiner output SNR. This cf. is used to obtain the symbol error probability for different coherent digital modulation schemes.  相似文献   

6.
In this paper we derive closed-form expressions for the single-user adaptive capacity of generalized selection combining (GSC) system, taking into account the effect of imperfect channel estimation at the receiver. The channel considered is a slowly varying spatially independent flat Rayleigh fading channel. The complex channel estimate and the actual channel are modelled as jointly Gaussian random variables with a correlation that depends on the estimation quality. Three adaptive transmission schemes are analyzed: (1) optimal power and rate adaptation; and (2) constant power with optimal rate adaptation, and (3) channel inversion with fixed rate. In addition to deriving an exact expression for the capacity of the aforementioned adaptive schemes, we analyze the impact of channel estimation error on the capacity statistics and the symbol error rate for GSC systems. The capacity statistics derived in this paper are the moment generating function, complementary cumulative distribution function and probability density function for arbitrary number of receive antennas. Moreover, exact closed-form expressions for M-PAM/PSK/QAM employing GSC are derived. As expected, the channel estimation error has a significant impact on the system performance.  相似文献   

7.
We analyze the performance for the noncoherent reception of M-ary orthogonal frequency shift keying with postdetection equal gain combining over a correlated fading channel. Two kinds of correlated fading statistics are considered: (1) Nakagami fading in which the diversity branches can have unequal signal-to-noise ratios (SNRs) as well as different m-parameters and (2) Rician fading in which the diversity branches can have unequal SNRs. Using the characteristic function of the combiner output SNR, closed-form expressions for the symbol error probability are obtained  相似文献   

8.
This paper enhances the conventional scaled selection combiner (SSC) for decode-and-forward (DF) relay networks using adaptive M-ary quadrature amplitude modulation (M-QAM) to improve the spectral efficiency. Compared with the conventional SSC designed for the combining of identically distributed diversity branches using the same modulation level, the improved SSC allows all diversity branches to choose different modulation levels according to the dissimilar channel conditions. Different scale factors are used for all diversity branches to reflect not only the performance degradation caused by possible erroneous relaying but also different error-resistance abilities of different levels QAM. We derive the bit-error-rate (BER) expressions for DF relay networks using SSC in a recursive way, with all channels conforming to independently and non-identically distributed (i.ni.d.) Rayleigh fading. Newton’s method is employed to obtain the numerical solutions of the optimal scale factors minimizing the BER, and the approximations of the optimal scale factors are derived in closed form for high SNRs. Theoretical analysis and simulation results show that the improved SSC can effectively combine diversity branches with different modulation levels, and for a DF cooperative network with N relay nodes, SSC achieves the full diversity gain of N+1 if for each branch its source-to-relay SNR is proportional to the (N+1)th power of its relay-to-destination SNR.  相似文献   

9.
We consider power adaptation strategies for binary phase-shift keying signals in Rayleigh fading channels under the assumption that channel state information is provided at both the transmitter and the receiver. We first derive a closed-form expression for the optimal power adaptation that minimizes average bit-error rate (BER) subject to average and peak transmission power constraints. Then, we analyze the average BER for channel inversion power adaptation with the same constraints. Our results show that the performance difference between the optimal power adaptation and the channel inversion becomes negligibly small as available average transmission power increases and/or peak-to-average power ratio decreases. We also find that an optimal peak-to-average power ratio exists that minimizes the average BER in the channel inversion scheme.  相似文献   

10.
Transmit signal design for optimal estimation of correlated MIMO channels   总被引:4,自引:0,他引:4  
We address optimal estimation of correlated multiple-input multiple-output (MIMO) channels using pilot signals, assuming knowledge of the second-order channel statistics at the transmitter. Assuming a block fading channel model and minimum mean square error (MMSE) estimation at the receiver, we design the transmitted signal to optimize two criteria: MMSE and the conditional mutual information between the MIMO channel and the received signal. Our analysis is based on the recently proposed virtual channel representation, which corresponds to beamforming in fixed virtual directions and exposes the structure and the true degrees of freedom in the correlated channel. However, our design framework is applicable to more general channel models, which include known channel models, such as the transmit and receive correlated model, as special cases. We show that optimal signaling is in a block form, where the block length depends on the signal-to-noise ratio (SNR) as well as the channel correlation matrix. The block signal corresponds to transmitting beams in successive symbol intervals along fixed virtual transmit angles, whose powers are determined by (nonidentical) water filling solutions based on the optimization criteria. Our analysis shows that these water filling solutions identify exactly which virtual transmit angles are important for channel estimation. In particular, at low SNR, the block length reduces to one, and all the power is transmitted on the beam corresponding to the strongest transmit angle, whereas at high SNR, the block length has a maximum length equal to the number of active virtual transmit angles, and the power is assigned equally to all active transmit angles. Consequently, from a channel estimation viewpoint, a faster fading rate can be tolerated at low SNRs relative to higher SNRs.  相似文献   

11.
In this work, closed-form expressions for capacities per unit bandwidth for MIMO-OFDM systems employing Orthogonal Space-Frequency Block Coding over multipath frequency-selective fading channels are derived for adaptation policies like optimal power and rate adaptation, optimal rate adaptation with constant transmit power, channel inversion with fixed rate, and truncated channel inversion polices. A Signal-to-Noise Ratio based user selection scheme is considered. Optimal power and rate adaptation policy provides the highest capacity over other adaptation policies. Capacity penalty is the highest for optimal rate adaptation with constant transmit power policy, while the performance of channel inversion with fixed rate policy and truncated channel inversion policy lie between that of OPRA and ORA policies.  相似文献   

12.
We provide a theoretical framework for cross-layer design in multimedia communications to optimize single-user throughput by selecting the transmitted bit rate and payload size as a function of channel conditions for both additive white Gaussian noise (AWGN) and Nakagami-m fading channels. Numerical results reveal that careful payload length adaptation significantly improves the throughput performance at low signal to noise ratios (SNRs), while at higher SNRs, rate adaptation with higher payload lengths provides better throughput performance. Since we are interested in multimedia applications, we do not allow retransmissions in order to minimize latency and to reduce congestion on the wireless link and we assume that packet loss concealment will be used to compensate for lost packets. We also investigate the throughput and packet error rate performance over multipath frequency selective fading channels for typical payload sizes used in voice and video applications. We explore the difference in link adaptation thresholds for these payload sizes using the Nafteli Chayat multipath fading channel model, and we present a link adaptation scheme to maximize the throughput subject to a packet error rate constraint.  相似文献   

13.
In order to detect the unused spectrum bands (the spectrum holes) efficiently in cognitive radios with low signal-to-noise radio (SNR), we propose to adopt two independent branches of wavelet to detect the singularities of the received signals’ power spectrum density (PSD). The sensing structure is flexible such that we can use one or two branches to cope with different SNRs. Under low SNR condition, each branch uses distinct characteristics between noise and signals in the wavelet transform to eliminate the singularities generated by the noise. By using bandpass filter to calculate PSD values of the subbands which are distinguished by the signal’s singularities, the subband with the minimum PSD value among all of the subbands could be found. Then, the results of the two branches are merged and analyzed in order to make the final decision. Finally, we use signal reconstruction to further remove the noise and then accurately detect the spectrum holes. When the SNR is high, only one branch through the denoising procedure is needed to get accurate sensing result. Our simulation results show that the two-branch wavelet method is more accurate than conventional approaches under given SNRs.  相似文献   

14.
Various papers on the channel capacity using different diversity combining techniques and/or adaptive transmission schemes are available to enhance channel capacity under fading environment without the necessity of increasing bandwidth and transmit powers. This paper provides the review on the channel capacity of MRC (Maximal ratio combining) over uncorrelated and correlated Nakagami-m fading channels with m = 1 (Rayleigh fading channel) under ORA (Optimum rate adaptation with constant transmit power), CIFR (Channel inversion with fixed rate) and OPRA (Optimum power and rate adaptation) schemes. We also highlight the effect of fade correlation on channel capacity and discuss the improvement of the system performance under the different adaptive techniques.  相似文献   

15.
In this letter, the use of adaptive source transmission with amplify-and-forward relaying is proposed. Three different adaptive techniques are considered: (i) optimal simultaneous power and rate adaptation; (ii) constant power with optimal rate adaptation; (iii) channel inversion with fixed rate. The capacity upper bounds of these adaptive protocols are derived for the amplify-and-forward cooperative system over both independent and identically distributed (i.i.d.) Rayleigh fading and non-i.i.d. Rayleigh fading environments. The capacity analysis is based on an upper bound on the effective received signal-to-noise ratio (SNR). The tightness of the upper bound is validated by the use of a lower bound and by Monte Carlo simulation. It is shown that at high SNR the optimal simultaneous power and rate adaptation and the optimal rate adaptation with constant power provide roughly the same capacity. Channel inversion is shown to suffer from a deterioration in capacity relative to the other adaptive techniques.  相似文献   

16.
In this paper, closed-form expressions for the capacities per unit bandwidth for Generalized Rayleigh fading channels are derived for optimal power adaptation, constant transmit power, channel inversion with fixed rate, and truncated channel inversion adaptation policies. The closed-form solutions are derived for the single antenna reception (without diversity combining) and MRC diversity reception cases. Optimal power adaptation policy provides the highest capacity over the other adaptation policies both with and without diversity combining. Truncated channel inversion policy suffers a large capacity penalty relative to the optimal power adaptation policy as the number of degrees of freedom is increased. However, with increase in diversity, the capacity penalty for the truncated channel inversion policy decreases. Capacity gains are more prominent for channel inversion with fixed rate policy as compared to the other adaptation policies.
Vidhyacharan BhaskarEmail:
  相似文献   

17.
In this paper,we consider a small‐scale multipath fading channel following the αμ generalized fading model distribution.We first derive an expression for the amount of fading () for this channel model to show the generalization attribute of this fading model recently reported in the literature. Then, we derive closed‐form expressions for the average channel capacity considering this channel distribution under different adaptive transmission protocols, namely the simultaneous power and rate adaptation protocol, the optimal rate adaptation with fixed power protocol, and the channel inversion with fixed‐rate protocol. All the obtained expressions are in closed‐form and general expressions that can reduce to other channel capacity expressions that are well‐known and to some others that are not known for Rayleigh, Nakagami‐m, and Weibull, as special cases. The derived expressions in this paper are new and have not been previously reported in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We address the problem of designing jointly optimum linear precoder and decoder for a MIMO channel possibly with delay-spread, using a weighted minimum mean-squared error (MMSE) criterion subject to a transmit power constraint. We show that the optimum linear precoder and decoder diagonalize the MIMO channel into eigen subchannels, for any set of error weights. Furthermore, we derive the optimum linear precoder and decoder as functions of the error weights and consider specialized designs based on specific choices of error weights. We show how to obtain: (1) the maximum information rate design; (2) QoS-based design (we show how to achieve any set of relative SNRs across the subchannels); and (3) the (unweighted) MMSE and equal-error design for fixed rate systems  相似文献   

19.
The study of channel capacity evaluation in conjunction with maximal ratio diversity-combining (MRC) is presented in this paper. Analysis of the capacity in correlative Nakagami-m fading channels is observed. Using the proposed fading model, the power and rate adaptation, constant transmit power, channel inversion with fixed rate and truncated channel inversion adaptation policies are analyzed. Our results show that the power and rate adaptation policy, being only slightly higher than capacity of constant transmit power policy, provides the highest capacity over the other adaptation policies. The results also show that truncated channel inversion adaptation policy is better alternative compared to complete channel inversion policy for all values of fading severity, diversity order and correlation coefficient.  相似文献   

20.
This paper presents two new methods for evaluating the ergodic channel capacities of cooperative non‐regenerative multirelay networks in a myriad of fading environments and under three distinct source‐adaptive transmission policies: (i) optimal rate adaptation with a fixed transmit power; (ii) optimal joint power‐and‐rate adaptation; and (iii) truncated channel inversion with fixed rate. In contrast to the previous related works, our proposed unified analytical frameworks that are based on the moment generating function and/or the cumulative distribution function of end‐to‐end signal‐to‐noise ratio allow us to gain insights into how power assignment during different transmission phases, relay node placement, fade distributions, and dissimilar fading statistics across the distinct communication links impact the ergodic capacity, without imposing any restrictions on the channel fading parameters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号