首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of chemoreceptive behavior in vipers suggest that snakes focus on the scent of envenomated tissue to track their prey following envenomation. Other studies have indicated a correlation between qualitative differences in venom biochemistry and geographic variation in diet. The North American copperhead (Agkistrodon contortrix) varies geographically in diet and venom biochemistry; snakes were collected from three populations (Kansas, Texas, and Louisiana) that are known to have different prey preferences. Behavioral experiments were conducted to assess whether copperheads preferred envenomated prey more than nonenvenomated prey, as do other species of vipers studied thus far. Additional experiments tested the ability of copperheads to distinguish between envenomated prey from different geographic populations, and between geographic populations of copperheads and two other species of viper. Results indicated that copperheads prefer envenomated prey to nonenvenomated prey. In envenomated-prey discrimination experiments, copperheads distinguished between envenomated prey from different geographic populations, and some snakes distinguished envenomated prey of A. contortrix from those of A. piscivorus and Sistrurus catenatus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to study the variation of venom biochemistry in this species and two other taxa (A. piscivorus and S. catenatus), and confirmed intraspecific and interspecific variation of venom proteins. Relative potency of the venom from different populations as indicated by time to immobilization experiments was in the order: Louisiana >Texas > Kansas. The relative potency of the venom from each population matched the order of preference in the chemoreception experiments. These results suggest that chemoreception is sensitive to subtle differences in venom biochemistry and may reflect adaptation to improve efficiency of finding envenomated prey.  相似文献   

2.
Young corn snakes,Elaphe guttata, were tested for responses to chemicals from heterospecific snakes. Corn snakes exhibited more tongue-flicks to swabs freshly rubbed against the skin of an ophiophagous kingsnake,Lampropeltis getulus, than to blank swabs. Responses toL. getulus and a nonophiophagous western plains garter snake,Thamnophis radix haydeni, did not differ significantly. Corn snakes exhibited more tongue-flicks to swabs treated with chloroform extracts of the shed skins ofL. getulus; an ophiophagous eastern coachwhip,Masticophis flagellum; and a nonophiophagous gray ratsnake,Elaphe obsoleta, than to blank swabs, but they did not discriminate between ophiophagous and nonophiophagous species in every case. Corn snakes, when offered shelters containing bedding from the home cages of a nonophiophagous water snake,Nerodia erythrogaster, an occasionally ophiophagous water moccasin,Agkistrodon pisdvorus; orL. getulus and untreated bedding, failed to reside under snake-scented shelters at a rate significantly different from that expected by chance. The responses of corn snakes are compared with those reported for other snakes presented with heterospecific snake chemicals.  相似文献   

3.
Three populations of the water snake,Natrix s. sipedon, were tested for their responses to surface water extracts prepared from various prey species. It was clearly shown that these snakes can distinguish between different prey genera on the basis of chemical cues alone. Adult snakes caught at a fish hatchery where goldfish (Carassius auratus) were abundant responded most to goldfish extract, as did laboratory-born snakes reared on goldfish for one year. However, snakes caught in a relatively undisturbed mountain stream environment and naive young born to a mountain female responded more to the extracts of various sympatric-mountain fish and amphibians. The evidence indicates that newborn snakes have genetic predispositions for sympatric species of the classes of prey normally eaten. These preferences can be enhanced or inhibited during ontogeny.  相似文献   

4.
Materials previously shown to elicit increased tongue-flicking and prey attack in garter snakes (Thamnophis sirtalis) were isolated from both earthworms (Lumbricus terrestris) and fish (Pimephales promelas). Both high- and low-molecular-weight components from earthworms and fish stimulated attacks and increased tongue-flicking in previously unfed neonate garter snakes relative to distilled water controls. Earthworm collagen was also effective, but even concentrated fractions were less effective than raw extract. Conflicting reports on the effectiveness of collagen suggest that the salient chemical(s) is a smaller molecule tightly bound to collagen and resisting standard purification methods.  相似文献   

5.
Prey species show diverse antipredator responses to chemical cues signaling predation threat. Among terrestrial vertebrates, the red-backed salamander, Plethodon cinereus, is an important species in the study of these chemical defenses. During the day and early evening, this species avoids rinses from garter snakes, Thamnophis sirtalis, independent of snake diet, but late at night, avoids only those rinses from garter snakes that have recently eaten P. cinereus. We tested whether the selective, late-night response requires the ingestion or injury of salamanders. In three experiments, we tested P. cinereus for their responses to separate or combined rinses from salamanders (undisturbed, distressed, and injured P. cinereus) and snakes (unfed, earthworm fed, and salamander-fed T. sirtalis). When paired against a water control, only rinses from salamander-fed snakes were avoided. When salamander treatments (undisturbed or distressed) were combined with the snake treatments (unfed or earthworm-fed) and tested against a water control, the combinations elicited avoidance. When selected treatments were paired against the standard rinse from salamander-fed snakes, only the combined rinses from salamanders and snakes nullified the avoidance response to the standard rinse. These data reveal a prey defense mechanism involving chemical elements from both the predator and prey that does not require injury or ingestion of the prey in the formation of the cue.  相似文献   

6.
Monitor lizards prey on snakes. Conversely, venomous snakes prey on juvenile monitor lizards. Immediately after hatching, monitor lizards are naive to all prey items, thus correct assessment of snake prey is paramount for survival. Experiments were conducted to determine how hatchling monitor lizards (Varanus albigularis) with no previous exposure to snakes reacted to sympatric venomous and nonvenomous snakes. Hatchling lizards attacked harmless snakes, but avoided venomous species. Lizards readily accepted meat from skinned snakes, regardless of species. When invertebrate prey covered with skin segments from venomous snakes were restrained from moving, they were usually investigated by tongue-flicking and rejected. Unrestrained skin-covered prey, however, were generally attacked and eaten without prior evaluation by tongue-flicking. Attack was inhibited in trials in which unrestrained prey were tongue-flicked, suggesting that chemical cues contained in snake skins mediate avoidance of venomous snakes. Selection for the ability to perceive snake integumental chemicals may be especially strong in species that both consume and are consumed by snakes.  相似文献   

7.
A potent proteinaceous chemoattractant, eliciting prey attack by checkered garter snakes (Thamnophis marcianus) was isolated from aqueous washes of the common frogRana temporaria and purified by preparative continuous-elution electrophoresis. The biological activity of the frog crude extract or of the purified chemoattractive protein, measured by a snake bioassay, was unaffected by freezing, lyophilization, or dialysis but was lost after proteolytic digestion. The purified chemoattractant is glycosylated, has an apparent molecular mass of 24 kDa, estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE), and a pI of 4.8. It gave one spot in two-dimensional electrophoresis. The bioassay showed that this protein is highly attractive to snakes. The lowest concentration yielding positive responses in the snake bioassay was approximately 25 µg/ml. These results suggest that a water-soluble Mr 24 kDa glycoprotein molecule produced by the common frog may be a vomeronasal stimulus used by checkered garter snakes for prey recognition.  相似文献   

8.
Chemosensory responses to food are correlated with geographic variation in diet of some colubrid snakes, but the influence of diet on chemosensory behavior has not been established generally in snakes or lizards. Most lizards are generalist predators of small animals, making it difficult to study effects of diet, but herbivory and omnivory have evolved in several lineages, providing an excellent opportunity to study the effects of dietary change on chemosensory behavior. Based on ecological considerations, I argue that inclusion of plants in the diet of lizards that evolved from ambush foragers lacking prey chemical discrimination might be expected to evolve responsiveness to plant food chemicals. If animal prey also are retained in the diet, then responsiveness to prey chemicals should evolve as well. I experimentally studied tongue-flicking and biting responses by omnivorous geckos of the genus Rhacodactylus to chemical stimuli from plant and animal foods and control substances presented on cotton swabs. The lizards exhibited significantly greater responses to plant stimuli than to control stimuli. One of two species tested responded strongly to cricket chemicals, but the other showed no significant response to mouse surface chemical stimuli. The results support the hypothesis that dietary shifts induce corresponding changes in chemosensory response, but establishment of correlated evolution between diet and food chemical discriminations in lizards will require study of many herbivores/omnivores and insectivores as controls.  相似文献   

9.
The detection of a chemical alarm pheromone may allow receivers to avoid areas where a predator has captured the prey's conspecifics. We marked minnow traps with either brook stickleback (Culaea inconstans) skin extract or a control of distilled water and tested whether sticklebacks avoided the skin extract marked traps in a natural habitat. Significantly more sticklebacks were captured in traps marked with control water, thereby demonstrating avoidance of conspecific skin extract. The stickleback captured in traps marked with conspecific extract were significantly smaller than those captured in traps marked with control water, implicating ontogenetic factors (i.e., experience or physiological development) in the development of the response. We also captured significantly fewer finescale dace (Chrosomus neogaeus) and fathead minnows (Pimephales promelas) in traps marked with skin extract. These data suggest that dace and minnows may benefit by avoiding areas where predators have recently captured sticklebacks.  相似文献   

10.
Each of 10 prairie rattlesnakes (Crotalus viridis) was exposed to three types of trails after striking rodent prey (Mus musculus). One trail was made with mouse urine, another was made with tap water, and the third consisted of materials from mouse integument. The snakes exhibited trailing behavior only when integumentary trails were available. It was concluded that prairie rattlesnakes do not utilize urinary cues; instead they attend to materials associated with rodent skin and fur.  相似文献   

11.
Materials eliciting increased tongue flicking and prey attack in garter snakes were isolated from both earthworm and fish prey. New extraction methods based on chloroform-methanol mixtures are valuable adjuncts to the more typical aqueous preparations. Both high- and low-molecular weight components from earthworms and fish were active. The similarity between the active chemicals in these two classes of prey was established using several methods of analysis. These included chromatography, carbohydrate and amino acid analyses, and nuclear magnetic resonance.  相似文献   

12.
Mountain hares (Lepus timidus L.) commonly have high proportions of birch (Betula spp.) in their winter diets, whereas European hares (Lepus europaeus) do not. The effects of a birch extract added to laboratory diets offered to mountain hares and European hares on the digestibility and sodium balance were measured. The extract added contained total phenolics equivalent in amount to that occurring in diets containing 0, 40, 60 and 80% dry matter of birch twigs. Increasing dietary phenolic concentration led to reduced voluntary food intake and apparent protein digestibility in both hare species. No effects on apparent dry matter digestibility were observed. The highest concentration of birch extract caused severe sodium losses via the urine by European hares but not by mountain hares. The effects of the birch extract within the digestive system appear to be similar in the two hare species, whereas the mountain hare appears to be better adapted to the toxic effects that disrupted sodium balance in the European hare. These preliminary results suggest that detoxification rather than digestive abilityper se may contribute to different mammalian herbivores' feeding strategies.  相似文献   

13.
The ability of hatchling pine snakes (Pituophis melanoleucus) to select and follow or avoid chemical odors of prey (mice,Mus musculus) on a shavings and paper substrate was investigated in Y-maze experiments, as a function of incubation temperature and experience. Incubation temperature affected behavior in the maze, and the maze choices of naive snakes, but not of snakes that had already eaten a mouse. The data indicate that snakes that have eaten, preferentially enter the arm bearing chemical stimuli from mice, whereas those that have not eaten show no preference.  相似文献   

14.
Previous studies have shown that some mammals are able to neutralize venom from snake predators. California ground squirrels (Spermophilus beecheyi) show variation among populations in their ability to bind venom and minimize damage from northern Pacific rattlesnakes (Crotalus oreganus), but the venom toxins targeted by resistance have not been investigated. Four California ground squirrel populations, selected for differences in local density or type of rattlesnake predators, were assayed for their ability to neutralize digestive and hemostatic effects of venom from three rattlesnake species. In Douglas ground squirrels (S. b. douglasii), we found that animals from a location where snakes are common showed greater inhibition of venom metalloprotease and hemolytic activity than animals from a location where snakes are rare. Effects on general proteolysis were not different. Douglas ground squirrels also reduced the metalloprotease activity of venom from sympatric northern Pacific rattlesnakes (Crotalus oreganus oreganus) more than the activity of venom from allopatric western diamondback rattlesnakes (C. atrox), but enhanced fibrinolysis of sympatric venom almost 1.8 times above baseline levels. Two Beechey ground squirrel (S. b. beecheyi) populations had similar inhibition of venoms from northern and southern Pacific rattlesnakes (C. o. helleri), despite differences between the populations in the locally prevalent predator. However, the venom toxins inhibited by Beechey squirrels did vary among venom from Pacific rattlesnake subspecies, and between these venoms and venom from allopatric western diamondback rattlesnakes. Blood plasma from Beechey squirrels showed highest inhibition of metalloprotease activity of northern Pacific rattlesnake venom, general proteolytic activity and hemolysis of southern Pacific rattlesnake venom, and hemolysis by allopatric western diamondback venom. These results reveal previously cryptic variation in venom activity against resistant prey that suggests reciprocal adaptation at the molecular level.  相似文献   

15.
Previous studies have shown that some mammals are able to neutralize venom from snake predators. California ground squirrels (Spermophilus beecheyi) show variation among populations in their ability to bind venom and minimize damage from northern Pacific rattlesnakes (Crotalus oreganus), but the venom toxins targeted by resistance have not been investigated. Four California ground squirrel populations, selected for differences in local density or type of rattlesnake predators, were assayed for their ability to neutralize digestive and hemostatic effects of venom from three rattlesnake species. In Douglas ground squirrels (S. b. douglasii), we found that animals from a location where snakes are common showed greater inhibition of venom metalloprotease and hemolytic activity than animals from a location where snakes are rare. Effects on general proteolysis were not different. Douglas ground squirrels also reduced the metalloprotease activity of venom from sympatric northern Pacific rattlesnakes (C. o. oreganus) more than the activity of venom from allopatric western diamondback rattlesnakes (C. atrox), but enhanced the fibrinolysis of sympatric venom almost 1.8 times above baseline levels. Two Beechey ground squirrel (S. b. beecheyi) populations had similar inhibition of venoms from northern and southern Pacific rattlesnakes (C. o. helleri), despite differences between the populations in the locally prevalent predator. However, the venom toxins inhibited by Beechey squirrels varied among venom from Pacific rattlesnake subspecies, and between these venoms and venom from allopatric western diamondback rattlesnakes. Blood plasma from Beechey squirrels showed highest inhibition of metalloprotease activity of northern Pacific rattlesnake venom, general proteolytic activity and hemolysis of southern Pacific rattlesnake venom, and hemolysis by allopatric western diamondback venom. These results reveal previously cryptic variation in venom activity against resistant prey that suggests reciprocal adaptation at the molecular level.  相似文献   

16.
Postlarval lobsters (4th–7th stage) exclusively fed frozen brine shrimp (Artemia saline) were assayed for food-search response to extracts and metabolites from four common prey: soft clams (Mya arenaria), blue mussels (Mytilus edulis), rock crabs (Cancer irroratus), and sea stars (Asterias vulgaris). Concentrations of soluble primary amines, protein, and ammonia in prey tissues and metabolites were determined. No significant responses were observed for any prey metabolites diluted to 1 and 10%, while onlyA. vulgaris evoked a significant response at full strength, suggesting that predatorily naive lobsters have yet to develop more pronounced chemosensory responses shown by field-collected lobsters. Removal of protein with retention of small-molecular-weight polar molecules did not appear to affect response to prey extracts. EC50s, as micromoles per liter amines, computed from prey extract dose-response curves indicate differences per unit amine between prey extracts, withA. vulgaris extract more potent as an attractant than either bivalve extract.C. irroratus extract was equally attractive as the other three extracts. Ammonia levels excreted into seawater over 3 hr were similar for all prey species, while soluble primary amines and proteins were undetectable. Ammonia and protein per gram whole prey varied significantly between extracts of prey species, while primary amines were similar. Lobsters may be attracted preferentially to carrion species with higher concentrations of amines and/or higher potency of attractants per unit amine.  相似文献   

17.
A hypothesis that size selection of prey by predators elicits size-specific responses from prey was examined. Freshwater snails, Pomacea canaliculata, ages 1, 3, 7, 15, 30, or 60 days, were given an extract of 3-day-old snails, and 3-day-old snails were given extracts of snails of the other ages or eggs. Snails 15 days or younger crawled out of the water in response to the 3-day-old snail extract, but older ones did not. The 3-day-old snails responded to the extracts of snails of all examined ages, but not to the extract of eggs. Snails of four size classes, 3-days-old, small (shell lengths 8–12 mm), medium (13–20 mm), and large (>28 mm) were given extracts of snails of each of these four classes. The 3-day-old snails crawled out of the water in response to the extract of 3-day-old snails, but showed a lower or no response to other extracts. Larger snails buried themselves in the soil in response to the extract of snails of similar sizes. These responses are discussed in the context of the evolution of the snail's avoidance behavior in response to the size-dependent prey choice by the predator.  相似文献   

18.
The brown tree snake (Boiga irregularis) is an exotic pest species on Pacific islands, most notably on Guam where it has caused considerable ecological and economic damage. On Guam, the snake commonly associates with people and can be found near or in human habitations. Bites are common, approximately 1 of 1200 emergency room visits to Guam hospitals were reported to be the result of B. irregularis bites; 80% of these victims were attacked while sleeping. Most of the attacks occurred on fingers and hands and the attacks appeared to be predatory, rather than defensive, in nature. In order to characterize the mechanism releasing this unusual behavior, we measured the predatory response of B. irregularis to chemical stimuli from humans and controls using a lab population that originated from Guam and a wild population from the species' native range in Queensland, Australia. To quantify behavior we measured the proportion of snakes displaying predatory behavior to each of the stimuli, the latency to attack, and the number of tongue-flicks displayed. We quantified predatory behavior using the tongue-flick attack score for repeated measures [TFAS(R)], a common method for quantifying predatory behavior in squamate reptiles. Captive brown tree snakes responded to human skin stimuli with feeding behavior, including predatory attacks, at the same frequency as they did to prey stimuli derived from mice, while never responding to controls with such behavior. Captive snakes also responded to human skin stimuli and prey stimuli with significantly higher TFAS(R) scores than to controls, although there were no differences between the human and mouse stimuli. Wild-caught animals in Australia also responded with predatory attacks to human skin stimuli, while not showing predatory behavior to a blank control and with higher TFAS(R) scores to human skin stimuli than to the control. As B. irregularis is a generalized predator that relies heavily on chemical signals to recognize prey, we hypothesize that the snakes recognize compounds on human skin that may be shared with other prey.  相似文献   

19.
We studied two populations of damselfly larvae (Enallagma boreale): one population cooccurred with a predatory fish (northern pike, Esox lucius); the other did not. Damselflies that cooccurred with pike adopted antipredator behavior (reduced activity) in response to chemical stimuli from injured conspecifics, and to chemical stimuli from pike, relative to a distilled water control. Damselflies from an area where pike do not occur responded only to chemical stimuli from injured conspecifics. In a second set of experiments, we conditioned pike-naive damselflies to recognize and respond to chemical stimuli from pike with antipredator behavior. Damselfly larvae that were previously unresponsive to pike stimuli learned to recognize pike stimuli after a single exposure to stimuli from pike and injured damselflies or pike and injured fathead minnows (Pimephales promelas). The response to injured fathead minnows was not a general response to injured fish because damselfly larvae did not respond to chemical stimuli from injured swordtails (Xiphophorus helleri), an allopatric fish. Taken together, these data suggest a flexible learning program that allows damselfly larvae to rapidly acquire the ability to recognize local predation risk based on chemical stimuli from predators, conspecifics, and heterospecific members of their prey guild.  相似文献   

20.
The ability to discriminate prey chemicals from control substances and the presence of a poststrike elevation in tongue-flicking (PETF) rate are experimentally demonstrated in the lacertid lizard,Podarcis muralis, The tongue-flick attack score, a composite index of response strength, was significantly higher in response to integumental chemicals from cricket than to cologne or distilled water. The cricket chemicals additionally elicited a significantly greater rate of tongue-flicking and higher proportion of attacks by the lizards than did control stimuli. PETF combined with apparent searching movements strongly suggest the presence of strike-induced chemosensory searching (SICS). Experimental evidence indicates that both PETF and SICS occur in insectivorous representatives of three families of actively foraging autarchoglossan lizards, suggesting their widespread occurrence in such lizards. The adaptive roles of chemosensory behavior in the foraging behavior of P.Muralis are discussed. It is proposed that these lizards may form chemical search images and that PETF and SICS may have been present in the lacertilian ancestors of snakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号