共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
如何将带有大量标记数据的源域知识模型迁移至带有少量标记数据的目标域是少样本学习研究领域的热点问题.针对现有的少样本学习算法在源域数据与目标域数据的特征分布差异较大时存在的泛化能力较弱的问题,提出一种基于伪标签的半监督少样本学习模型FSLSS(Few-Shot Learning based on Semi-Supervised).首先,利用pytorch深度学习框架建立一个关系型深度学习网络,并使用源域数据对网络进行预训练;然后,使用此网络对目标域数据进行分类预测,将分类概率最大的类标签作为数据的伪标签;最后,利用目标域的伪标签数据和源域的真实标签数据对网络进行混合训练,并重复伪标签标记与混合训练过程.实验结果表明,相对于现有主流少样本学习算法,FSLSS模型有更好的泛化能力及知识迁移效果. 相似文献
5.
针对变电站中保护压板开关状态自动识别问题,提出了一种基于少样本学习和知识迁移的压板开关状态识别模型,使用残差网络提取图像特征,基于度量方法计算查询图像与支持图像之间的相似度,在此基础上使用KNN实现压板开关状态的分类识别。将残差网络在公用数据集上预训练的模型直接迁移到基于少样本学习的压板开关状态的识别任务,并研究了KNN算法中不同的最近邻个数对压板开关状态分类结果的影响。所提方法可在图像样本少的情况下实现压板开关状态的识别。实验结果表明,在支持图像的样本数为30时,图像识别精度达到99.49%。相比于其他大样本的分类方法,所提出的利用少量样本的分类方法能够实现令人满意的分类效果,提高了图像分类的效率。 相似文献
6.
针对信号辐射源个体识别小样本难以稳定收敛、识别准确率不足的问题,提出了一种基于优化孪生网络模型进行小样本辐射源个体识别的方法,分析了通过孪生网络实现不同类别样本对特征向量距离增大、相同类别样本对特征向量距离减小的弹簧模型,达到小样本训练损失函数的快速收敛的目的,并结合交叉熵实现损失函数优化,从而提升了小样本个体识别的准确率和稳定性。试验结果表明,针对每类不大于10个训练样本集的通信电台所提方法能够达到88%以上个体识别准确率。 相似文献
7.
8.
随着深度学习在计算机视觉领域取得令人鼓舞的成果,基于深度学习技术实现对合成孔径雷达(Synthetic Aperture Radar, SAR)图像中时敏目标的分类识别已成为可能,实测SAR图像中时敏目标自动识别应用再次吸引了全球广大学者的目光。受客观条件所限,高质量实测SAR目标样本切片的获取代价大、成本高、数量少,且SAR对成像参数和目标姿态敏感,导致SAR图像面临的少样本条件下的目标识别问题更为突出。本文深度挖掘MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集的目标识别潜力,针对10类SAR图像车辆目标分类识别潜能进行了研究和分析。为衡量不同样本数量条件下SAR目标识别潜能,同时降低对目标样本选取的随机性,提出利用不同数量实测训练样本,生成全角度训练数据集,对参与训练的样本进行规范化和合理化采样处理;将全角度扩充后得到的训练样本集作为标准模板数据集,通过遍历模板数据集,采用似然比相似性度量(Likelihood Ratio Similarity Measure, LiRSM)来衡量目标相似性,利用... 相似文献
9.
敌我识别在现代战争中是十分关键的一环,有效的敌我识别可以避免攻击己方目标,能够实现更精准地打击。文章以指挥信息系统为背景,针对军事样本数据少的问题,提出了基于度量学习的敌我识别方法,用基于小样本学习分类技术实现在少样本条件下的敌我识别。相比以往基于概率推理的图像分类技术,能够更准确地实现敌我目标的分类。 相似文献
10.
当前,大部分农作物病害图像识别方法主要关注于精度而忽略了鲁棒性.在面向实际环境时,由于噪声干扰和环境因素影响导致识别精度不高.为此提出了一种高阶残差和参数共享反馈的卷积神经网络模型以应用于实际环境农作物病害识别.其中,高阶残差子网络为病害表观提供丰富细致的特征表达,以提高模型识别精度;参数共享反馈子网络用来进一步抑制原深层特征中的背景噪声,以提高模型的鲁棒性.实验结果表明,当面向实际环境农作物病害识别时,本文方法在识别精度和鲁棒性上均优于其他方法. 相似文献
11.
当前大部分目标检测都依赖于大规模的标注数据集来保证其检测的正确率,而在实际场景中,大量数据的获取是十分困难的,且对数据的标注也需要花费大量人力物力。针对这一问题提出了一种基于Faster RCNN的少样本目标检测算法(CA-FSOD),在目标类别仅有少量标注样本的情况下,对目标样本进行检测。为了提高检测性能,首先提出了CBAM-Attention-RPN模块,减少无关候选框的数量;其次提出了全局-局部关系检测器模块,通过关联少量标注样本和待检测样本的特征,获取与目标类别更相关的候选区域;最后提出了基于余弦Softmax损失的分类器作为目标检测的分类分支,能有效地聚合同类别特征、降低类内方差、提高检测精度。为了验证所提算法,在MS COCO数据集上进行了训练和测试,实验结果表明,该方法的AP50为21.9%,优于目前一些少样本目标检测算法。 相似文献
12.
13.
14.
针对现有小样本高分辨距离像(high resolution range profile,HRRP)元学习识别方法难以适应任务经验差异的问题,提出了基于损失加权修正的舰船目标元学习识别方法。该方法以元学习理论为基础,设计了基础学习器与元学习器相结合的预训练模型。由于不同的特性损失可反映出学习经验的差异程度,故基于任务损失值对元学习器的损失函数进行加权处理,以减轻不同任务的偏差影响。然后,利用预训练模型对仿真数据的学习经验,在小样本测试任务集上进行舰船目标实测HRRP的分类识别。实验结果表明,所提方法与对比模型相比,可在小样本条件下获得更佳的识别效果,具备良好的小样本分类识别能力。 相似文献
15.
16.
17.
随着网络深度的增加,图卷积网络容易出现过拟合现象,且现有的少样本学习方法往往会忽略具有类别特点的局部细节信息对于分类的贡献。因此,文章提出了一种基于自适应细节特征增强网络与语义对齐图卷积网络的少样本学习方法,能够根据经验知识去学习生成具有可变感受野范围,并从长宽和通道维度中捕捉具有类别特点的局部细节信息的卷积核。本研究将单一学习任务中所有强化后的特征图构造成图结构数据,利用语义对齐图卷积网络对结点特征进行优化,同时引入语义对齐操作防止出现过拟合现象。 相似文献
18.
临近空间高动态飞行器在高速飞行过程中与大气强烈作用,形成十分复杂的高温等离子鞘套,改变了目标的散射回波特性,给目标探测带来不确定性,需要及时判别当前目标是否处于等离子鞘套状态。本文提出一种基于波形熵判别和变带宽确认的等离子鞘套自动判别方法,首先提取目标回波波形熵、包络长度等特征信息,利用模糊分类器进行基于波形熵的群目标判别,其次根据鞘套与目标和目标之间的距离与信号带宽的关系差异,通过检测不同带宽回波的包络长度变化,对鞘套和目标进行判别。仿真结果验证了本文所提方法的有效性。 相似文献
19.
20.
在军事空中目标识别领域,由于样本数量缺失,现有人工智能算法无法完成准确识别。文章利用已有足量辅助域图像辅助少样本应用域进行跨域目标识别,解决因标签缺失与样本稀疏导致的识别模型泛化能力不强及性能不佳问题。文章提出一种基于深层-浅层双流学习图模型(D-SLGM)的跨域目标识别算法。首先,提出一种深层-浅层双流特征提取算法,解决无监督少样本条件下特征表示困难的问题;同时,提出一种基于图模型的特征融合算法,实现特征间高精度融合;基于融合后的特征训练识别模型,提升算法的泛化能力。使用自建空中目标数据集,设计三种应用场景。实验结果表明,D-SLGM平均识别准确率均值达到78.2%,优于对比方法,在实际空中目标识别应用中具有较大潜力。 相似文献