首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于GaAs单片微波集成电路(MMIC)工艺设计并制备了一款宽带射频前端多功能电路芯片,其包含功率放大器、限幅低噪声放大器(LNA)和收发开关.功率放大器采用平衡式结构同时选择合适的匹配网络实现宽带匹配;限幅器第一级采用功分结构提高耐功率能力;LNA前三级采用电流复用拓扑结构实现低功耗,最后一级采用自偏置结构增加动态范围;天线端的开关具有较高的功率容量,保证信号经过开关后不会压缩而导致发射支路输出功率不足.测试结果显示,电路在6~ 18 GHz频带内,接收支路噪声系数典型值为3.7 dB,增益约为27 dB,1 dB压缩点输出功率典型值大于7 dBm,功耗约为140 mW,能耐受1W的连续波输入功率;发射支路饱和输出功率大于30 dBm,功率附加效率典型值为26%.  相似文献   

2.
曾志  周鑫 《半导体技术》2021,46(5):354-357
基于0.15 μm GaAs pin二极管和GaAs PHEMT工艺,设计并实现了一款5~13 GHz限幅低噪声放大器(LNA)单片微波集成电路(MMIC).该MMIC中限幅器采用三级反向并联二极管结构,优化了插入损耗和耐功率性能;LNA采用两级级联设计,利用负反馈和源电感匹配,在宽带下实现平坦的增益和较小的噪声;限幅器和LNA进行一体化设计,实现了宽带耐功率和低噪声目标.测试结果表明,在5~13GHz内,该MMIC的小信号增益大于20 dB,噪声系数小于1.8 dB,耐功率大于46 dBm(2 ms脉宽,30%占空比),总功耗小于190 mW,芯片尺寸为3.3 mm×1.2 mm.限幅LNA MMIC芯片的尺寸较小,降低了组件成本,同时降低了组件装配难度,提高通道之间的一致性.  相似文献   

3.
运用微波在片测试技术和IC-CAP模型提取软件对总栅宽为850μm PHEMT器件进行了大信号建模,并利用此模型,采用分布式放大器与电抗匹配相结合的方法,制备了一款三级宽带功率放大器。实验测试结果和ADS仿真结果相吻合。其测试结果为:在6~18GHz频段内,平均输出功率Po为33dBm,功率增益Gp在22~24dB之间,功率附加效率PAE在23%~28%之间,输入输出端口电压驻波比VSWR<1.8,稳定性判断因子K>1(在5~19GHz内)。  相似文献   

4.
宽带GaAs MMIC功率放大器在电子系统和微波通信中得到广泛应用。南京电子器件研究所最近研制成一种2~6GHz宽带功率放大器,具有比较优异的性能。  相似文献   

5.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺研制了一款DC~70 GHz超宽带放大器单片微波集成电路(MMIC)。采用6级共源共栅结构,拓展了超宽带放大器MMIC的带宽,提高了其增益。在共源共栅PHEMT之间引入一条调谐微带线作为调谐电感,改善了超宽带放大器MMIC的增益平坦度。在片测试结果表明,该放大器MMIC在DC~70 GHz内,小信号增益大于8.3 dB,增益平坦度典型值为±1 dB,饱和输出功率大于13 dBm。在50 GHz以下噪声系数小于5 dB,在70 GHz的噪声系数为8.5 dB。该放大器MMIC的工作电压为8 V,电流为70 mA,包含射频压点与直流压点的芯片尺寸为1.39 mm×1.11 mm。  相似文献   

6.
基于0.15μm栅长GaAs E-PHEMT工艺,设计了一款可应用于X波段和Ku波段的宽带高效率功率放大器.针对二次谐波会明显降低功率放大器效率的问题,采用四分之一波长微带线组成输出端偏置网络,将二次谐波短接到地,有效地提高了功率附加效率;通过分析匹配网络级数对宽带匹配的影响,输出匹配电路采用电容微带线组成的两级电抗网...  相似文献   

7.
6~18 GHz宽带GaN功率放大器MMIC   总被引:1,自引:1,他引:0  
报道了一款采用三级拓扑结构的6~18 GHz宽带单片微波功率放大器芯片.放大器采用了微带结构,并使用电抗匹配进行设计,减小输出匹配电路的损耗和提高效率.经匹配优化后放大器在6~18 GHz整个频带内脉冲输出功率大于6 W,小信号增益达到25 dB,在14 GHz频点处峰值输出功率达到10 w,对应的功率附加效率为21%...  相似文献   

8.
研制了一款60~90 GHz功率放大器单片微波集成电路(MMIC),该MMIC采用平衡式放大结构,在较宽的频带内获得了平坦的增益、较高的输出功率及良好的输入输出驻波比(VSWR)。采用GaAs赝配高电子迁移率晶体管(PHEMT)标准工艺进行了流片,在片测试结果表明,在栅极电压为-0.3 V、漏极电压为+3 V、频率为60~90 GHz时,功率放大器MMIC的小信号增益大于13 dB,在71~76 GHz和81~86 GHz典型应用频段,功率放大器的小信号增益均大于15 dB。载体测试结果表明,栅极电压为-0.3 V、漏极电压为+3 V、频率为60~90 GHz时,该功率放大器MMIC饱和输出功率大于17.5 dBm,在71~76 GHz和81~86 GHz典型应用频段,其饱和输出功率可达到20 dBm。该功率放大器MMIC尺寸为5.25 mm×2.10 mm。  相似文献   

9.
基于0.15 μm GaAs增强型赝配高电子迁移率晶体管(E-PHEMT)工艺,研制了一款用于5G通信和点对点传输的高性能线性功率放大器单片微波集成电路(MMIC).采用栅宽比为1:4.4的两级放大结构保证了电路的增益和功率指标满足要求;基于大信号模型实现了最优输入输出阻抗匹配:采用电磁场仿真技术优化设计的MMIC芯片尺寸为2.5 mm×1.1 mm.芯片的在片测试结果表明,静态直流工作点为最大饱和电流的35%、漏压为5V的条件下,在9 ~15 GHz频率内,MMIC功率放大器小信号增益大于20 dB,1 dB压缩点输出功率不小于27 dBm,功率附加效率不小于35%,功率回退至19 dBm时三阶交调不大于-37 dBc.  相似文献   

10.
基于0.25μm Ga N HEMT工艺,研制了一款两级拓扑放大结构的2~8 GHz宽带功率放大器MMIC(单片微波集成电路)。MMIC所用Ga N HEMT器件结构经过优化,提高了放大器的可靠性和性能;电路采用多极点电抗匹配网络,扩展了放大器的带宽,减小了电路的损耗。测试结果表明,在2~8 GHz测试频带内,在脉冲偏压28 V(脉宽1 ms,占空比30%)时,峰值输出功率大于30 W,功率附加效率大于25%,小信号增益大于24 d B,输入电压驻波比在2.8以下,在6 GHz处的峰值输出功率达到50 W,功率附加效率达到40%;在稳态偏压28 V时,连续波饱和输出功率大于20 W,功率附加效率大于20%。尺寸为4.0 mm×5.0 mm。  相似文献   

11.
2~6GHz单片功率放大器   总被引:8,自引:0,他引:8  
报道了有耗匹配宽带单片功率放大器的研究方法和结果。该两级单片功放电路采用自建的 Root非线性模型进行了谐波平衡分析。在 2 .0~ 6.7GHz频带上线性增益为 17d B,平坦度为± 0 .75d B,输入和输出驻波分别小于 2。全频带上 ,饱和输出功率为 1~ 1.4 W,功率附加效率大于2 0 %。该宽带单片功率放大器在 76mm Ga As单片 MMIC工艺线上用全离子注入、0 .5μm栅长工艺研制完成 ,电路芯片面积为 0 .1mm× 2 .6mm× 2 .7mm。  相似文献   

12.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

13.
14.
文章介绍了一种准单片形式的功率放大器,采用南京电子器件研究所研制的12mm栅宽的GaAs pHEMT功率管芯,设计了准单片电路形式的匹配电路,设计所得的功率放大器在8.5GHz~10GHz频带范围内,输出功率典型值为5W,功率增益大于6dB,相对带宽大于16%,典型功率附加效率为25%,输入电压驻波比小于2.5。  相似文献   

15.
介绍了基于GaAs PHEMT工艺设计的一款宽带反射型MMIC SPST开关的相关技术,基于成熟的微波单片集成电路设计平台开展了宽带SPST开关设计.工作频率范围为DC~40 GHz,插入损耗≤0.8 dB,隔离度≥25 dB,驻波比≤1.4:1.同时,对电路的通孔特性进行了分析,对电路设计流程进行了阐述.要获得期望带宽的开关,如何选择控制器件的通孔连接方式,以及通孔数量对插入损耗等性能的影响.最终,具有小尺寸和优异微波性能的GaAs微波单片集成单刀单掷开关电路成功开发.  相似文献   

16.
刘如青  刘帅  高学邦  付兴中 《半导体技术》2021,46(8):599-603,634
以50 μm厚的SiC为衬底,基于T型栅GaN HEMT工艺技术,设计并制作了一款V波段GaN功率放大器单片微波集成电路(MMIC).该功率放大器MMIC电路采用三级放大拓扑结构进行设计;采用高低阻抗微带传输线进行阻抗匹配和片上功率合成;采用介质电容和薄膜电阻进行偏置网络设计,实现稳定工作和低损耗输出.经测试,在55~65 GHz频带内,漏极工作电压+20V、栅极工作电压-2.3 V的偏置条件下,在占空比20%、脉宽100 μs脉冲状态时,该功率放大器MMIC的饱和输出功率达到3 W以上,功率附加效率达到22%;连续波状态时,其饱和输出功率达到2.5 W以上,60 GHz时最高功率达到3 W.  相似文献   

17.
孙昕  陈莹  陈丽  李斌 《半导体技术》2017,42(8):569-573,597
采用稳懋公司150 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了一款5 ~ 10 GHz单片微波集成电路(MMIC)低噪声放大器(LNA).该LNA采用三级级联结构,且每一级采用相同的偏压条件,电路的低频工作端依靠电容反馈,高频工作端依靠电阻反馈调节阻抗匹配,从而实现宽带匹配,芯片面积为2.5 mm×1 mm.测试结果表明,工作频率为5~10 GHz,漏极电压为2.3V,工作电流为70 mA时,LNA的功率增益达到35 dB,平均噪声温度为82 K,在90%工作频段内输入输出回波损耗优于-15 dB,1 dB压缩点输出功率为10.3 dBm,仿真结果与实验结果具有很好的一致性.  相似文献   

18.
采用中国电子科技集团公司第十三研究所的GaAs PHEMT低噪声工艺,设计了一款2~4 GHz微波单片集成电路低噪声放大器(MMIC LNA)。该低噪声放大器采用两级级联的电路结构,第一级折中考虑了低噪声放大器的最佳噪声和最大增益,采用源极串联负反馈和输入匹配电路,实现噪声匹配和输入匹配。第二级采用串联、并联负反馈,提高电路的增益平坦度和稳定性。每一级采用自偏电路设计,实现单电源供电。MMIC芯片测试结果为:工作频率为2~4 GHz,噪声系数小于1.0 dB,增益大于27.5 dB,1 dB压缩点输出功率大于18 dBm,输入、输出回波损耗小于-10 dB,芯片面积为2.2 mm×1.2 mm。  相似文献   

19.
研究了GaAs功率MESFET的小信号特性,大信号特性和其宽带匹配网络。选用TWT-2型功率器件,设计研制出了单级宽带功率放大器,在6~18GHz的工作频率范围内,小信号增益等于5.0±1.0dB,1dB压缩输出功率等于25.0±0.8dBm,输入输出驻波比小于2.5。  相似文献   

20.
基于0.13μm SiC基GaN高电子迁移率晶体管(HEMT)工艺,设计了一款V波段GaN功率放大器单片微波集成电路(MMIC)。该功率放大器MMIC采用三级放大拓扑结构以满足增益需求;使用高低阻抗微带传输线进行阻抗匹配,通过威尔金森功分器/合成器完成功率放大器的末端功率合成;通过对晶体管宽长比的设计与多胞晶体管的合成,实现了功率放大器的高功率稳定工作和高效率输出。经过测试,在59~61 GHz频率范围内,在占空比为20%、脉宽为100μs时,该功率放大器MMIC的饱和输出功率达到37 dBm以上,功率附加效率(PAE)大于21.1%,功率增益大于17 dB;连续波测试条件下输出功率大于36.8 dBm, PAE大于21%。该设计在输出功率和PAE上具有一定的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号