首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Angiogenesis is one of the main processes that coordinate the biological events leading to a successful pregnancy, and its imbalance characterizes several pregnancy-related diseases, including preeclampsia. Intracellular interactions via extracellular vesicles (EVs) contribute to pregnancy’s physiology and pathophysiology, and to the fetal–maternal interaction. The present review outlines the implications of EV-mediated crosstalk in the angiogenic process in healthy pregnancy and its dysregulation in preeclampsia. In particular, the effect of EVs derived from gestational tissues in pro and anti-angiogenic processes in the physiological and pathological setting is described. Moreover, the application of EVs from placental stem cells in the clinical setting is reported.  相似文献   

2.
Pregnancy is a unique situation of physiological immunomodulation, as well as a strong Multiple Sclerosis (MS) disease modulator whose mechanisms are still unclear. Both maternal (decidua) and fetal (trophoblast) placental cells secrete extracellular vesicles (EVs), which are known to mediate cellular communication and modulate the maternal immune response. Their contribution to the MS disease course during pregnancy, however, is unexplored. Here, we provide a first phenotypic and functional characterization of EVs isolated from cultures of term placenta samples of women with MS, differentiating between decidua and trophoblast. In particular, we analyzed the expression profile of 37 surface proteins and tested the functional role of placental EVs on mono-cultures of CD14+ monocytes and co-cultures of CD4+ T and regulatory T (Treg) cells. Results indicated that placental EVs are enriched for surface markers typical of stem/progenitor cells, and that conditioning with EVs from samples of women with MS is associated to a moderate decrease in the expression of proinflammatory cytokines by activated monocytes and in the proliferation rate of activated T cells co-cultured with Tregs. Overall, our findings suggest an immunomodulatory potential of placental EVs from women with MS and set the stage for a promising research field aiming at elucidating their role in MS remission.  相似文献   

3.
Gestational diabetes mellitus (GDM) increases risk of adverse pregnancy outcomes and maternal cardiovascular complications. It is widely believed that maternal endothelial dysfunction is a critical determinant of these risks, however, connections to maternal cardiac dysfunction and mechanisms of pathogenesis are unclear. Circulating extracellular vesicles (EVs) are emerging biomarkers that may provide insights into the pathogenesis of GDM. We examined the impact of GDM on maternal cardiac and vascular health in a rat model of diet-induced obesity-associated GDM. We observed a >3-fold increase in circulating levels of endothelial EVs (p < 0.01) and von Willebrand factor (p < 0.001) in GDM rats. A significant increase in mitochondrial DNA (mtDNA) within circulating extracellular vesicles was also observed suggesting possible mitochondrial dysfunction in the vasculature. This was supported by nicotinamide adenine dinucleotide deficiency in aortas of GDM mice. GDM was also associated with cardiac remodeling (increased LV mass) and a marked impairment in maternal diastolic function (increased isovolumetric relaxation time [IVRT], p < 0.01). Finally, we observed a strong positive correlation between endothelial EV levels and IVRT (r = 0.57, p < 0.05). In summary, we observed maternal vascular and cardiac dysfunction in rodent GDM accompanied by increased circulating endothelial EVs and EV-associated mitochondrial DNA. Our study highlights a novel method for assessment of vascular injury in GDM and highlights vascular mitochondrial injury as a possible therapeutic target.  相似文献   

4.
Background: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.  相似文献   

5.
Preeclampsia affects about 3–8% of all pregnancies. It represents a complex and multifaceted syndrome with at least several potential pathways leading to the development of disease. The main dogma in preeclampsia is the two-stage model of disease. Stage 1 (placental stage) takes place in early pregnancy and is thought to be impaired placentation due to inadequate trophoblastic invasion of the maternal spiral arteries that leads to reduced placental perfusion and release of numerous biological factors causing endothelial damage and development of acute maternal syndrome with systemic multiorgan failure (stage 2—the onset of maternal clinical symptoms, maternal stage). Recently, in the light of the vast body of evidence, two-stage model of preeclampsia has been updated with a few novel pathways leading to clinical manifestation in the second part of pregnancy. This paper reviews current state of knowledge about pathophysiology of preeclampsia and places particular focus on the recent advances in understanding of uterine artery remodeling alterations, as well as the role of microRNAs in preeclampsia.  相似文献   

6.
Over the past two decades, mesenchymal stromal cells (MSCs) have demonstrated great potential in the treatment of inflammation-related conditions. Numerous early stage clinical trials have suggested that this treatment strategy has potential to lead to significant improvements in clinical outcomes. While promising, there remain substantial regulatory hurdles, safety concerns, and logistical issues that need to be addressed before cell-based treatments can have widespread clinical impact. These drawbacks, along with research aimed at elucidating the mechanisms by which MSCs exert their therapeutic effects, have inspired the development of extracellular vesicles (EVs) as anti-inflammatory therapeutic agents. The use of MSC-derived EVs for treating inflammation-related conditions has shown therapeutic potential in both in vitro and small animal studies. This review will explore the current research landscape pertaining to the use of MSC-derived EVs as anti-inflammatory and pro-regenerative agents in a range of inflammation-related conditions: osteoarthritis, rheumatoid arthritis, Alzheimer’s disease, cardiovascular disease, and preeclampsia. Along with this, the mechanisms by which MSC-derived EVs exert their beneficial effects on the damaged or degenerative tissues will be reviewed, giving insight into their therapeutic potential. Challenges and future perspectives on the use of MSC-derived EVs for the treatment of inflammation-related conditions will be discussed.  相似文献   

7.
Endosome-derived small extracellular vesicles (EVs), often referred to as exosomes, are produced by almost all, if not all, cell types, and are critical for intercellular communication. They are composed of a lipid bilayer associated with membrane proteins and contain a payload of lipids, proteins and regulatory RNAs that depends on the parental cell physiological condition. By transferring their “cargo”, exosomes can modulate the phenotype of neighboring and distant cells. Stem cells (SC) were widely studied for therapeutic applications regarding their regenerative/reparative potential as well as their immunomodulatory properties. Whether from autologous or allogeneic source, SC beneficial effects in terms of repair and regeneration are largely attributed to their paracrine signaling notably through secreted EVs. Subsequently, SC-derived EVs have been investigated for the treatment of various diseases, including inflammatory skin disorders, and are today fast-track cell-free tools for regenerative/reparative strategies. Yet, their clinical application is still facing considerable challenges, including production and isolation procedures, and optimal cell source. Within the emerging concept of “allogeneic-driven benefit” for SC-based therapies, the use of EVs from allogeneic sources becomes the pragmatic choice although a universal allogeneic cell source is still needed. As a unique temporary organ that ensures the mutual coexistence of two allogeneic organisms, mother and fetus, the human placenta offers a persuasive allogeneic stem cell source for development of therapeutic EVs. Advancing cell-free therapeutics nurtures great hope and provides new perspectives for the development of safe and effective treatment in regenerative/reparative medicine and beyond. We will outline the current state of the art in regard of EVs, summarize their therapeutic potential in the context of skin inflammatory disorders, and discuss their translational advantages and hurdles.  相似文献   

8.
Embryonic implantation is a key step in the establishment of pregnancy. In the present work, we have carried out an in-depth proteomic analysis of the secretome (extracellular vesicles and soluble proteins) of two bovine blastocysts embryonic trophectoderm primary cultures (BBT), confirming different epithelial–mesenchymal transition stages in these cells. BBT-secretomes contain early pregnancy-related proteins and angiogenic proteins both as cargo in EVs and the soluble fraction. We have demonstrated the functional transfer of protein-containing secretome between embryonic trophectoderm and maternal MSC in vitro using two BBT primary cultures eight endometrial MSC (eMSC) and five peripheral blood MSC (pbMSC) lines. We observed that eMSC and pbMSC chemotax to both the soluble fraction and EVs of the BBT secretome. In addition, in a complementary direction, we found that the pattern of expression of implantation proteins in BBT-EVs changes depending on: (i) their epithelial–mesenchymal phenotype; (ii) as a result of the uptake of eMSC- or pbMSC-EV previously stimulated or not with embryonic signals (IFN-τ); (iii) because of the stimulation with the endometrial cytokines present in the uterine fluid in the peri-implantation period.  相似文献   

9.
Osteoarthritis (OA) is hallmarked by a progressive degradation of articular cartilage. One major driver of OA is inflammation, in which cytokines such as IL-6, TNF-α and IL-1β are secreted by activated chondrocytes, as well as synovial cells—including macrophages. Intra-articular injection of blood products—such as citrate-anticoagulated plasma (CPRP), hyperacute serum (hypACT), and extracellular vesicles (EVs) isolated from blood products—is gaining increasing importance in regenerative medicine for the treatment of OA. A co-culture system of primary OA chondrocytes and activated M1 macrophages was developed to model an OA joint in order to observe the effects of EVs in modulating the inflammatory environment. Primary OA chondrocytes were obtained from patients undergoing total knee replacement. Primary monocytes obtained from voluntary healthy donors and the monocytic cell line THP-1 were differentiated and activated into proinflammatory M1 macrophages. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and Western blot. Gene expression analysis of chondrocytes by RT-qPCR revealed increased type II collagen expression, while cytokine profiling via ELISA showed lower TNF-α and IL-1β levels associated with EV treatment. In conclusion, the inflammation model provides an accessible tool to investigate the effects of blood products and EVs in the inflammatory context of OA.  相似文献   

10.
Gestational diabetes mellitus (GDM) is an obstetric complication that affects approximately 5–10% of all pregnancies worldwide. GDM is defined as any degree of glucose intolerance with onset or first recognition during pregnancy, and is characterized by exaggerated insulin resistance, a condition which is already pronounced in healthy pregnancies. Maternal hyperglycaemia ensues, instigating a ‘glucose stress’ response and concurrent systemic inflammation. Previous findings have proposed that both placental and visceral adipose tissue play a part in instigating and mediating this low-grade inflammatory response which involves altered infiltration, differentiation and activation of maternal innate and adaptive immune cells. The resulting maternal immune dysregulation is responsible for exacerbation of the condition and a further reduction in maternal insulin sensitivity. GDM pathology results in maternal and foetal adverse outcomes such as increased susceptibility to diabetes mellitus development and foetal neurological conditions. A clearer understanding of how these pathways originate and evolve will improve therapeutic targeting. In this review, we will explore the existing findings describing maternal immunological adaption in GDM in an attempt to highlight our current understanding of GDM-mediated immune dysregulation and identify areas where further research is required.  相似文献   

11.
12.
During early development, embryos secrete extracellular vesicles (EVs) that participate in embryo–maternal communication. Among other molecules, EVs carry microRNAs (miRNAs) that interfere with gene expression in target cells; miRNAs participate in embryo–maternal communication. Embryo selection based on secreted miRNAs may have an impact on bovine breeding programs. This research aimed to evaluate the size, concentration, and miRNA content of EVs secreted by bovine embryos with different developmental potential, during the compaction period (days 3.5–5). Individual culture media from in vitro–produced embryos were collected at day 5, while embryos were further cultured and classified at day 7, as G1 (conditioned-culture media by embryos arrested in the 8–16-cells stage) and G2 (conditioned-culture media by embryos that reached blastocyst stages at day 7). Collected nanoparticles from embryo conditioned culture media were cataloged as EVs by their morphology and the presence of classical molecular markers. Size and concentration of EVs from G1 were higher than EVs secreted by G2. We identified 95 miRNAs; bta-miR-103, bta-miR-502a, bta-miR-100, and bta-miR-1 were upregulated in G1, whereas bta-miR-92a, bta-miR-140, bta-miR-2285a, and bta-miR-222 were downregulated. The most significant upregulated pathways were fatty acid biosynthesis and metabolism, lysine degradation, gap junction, and signaling pathways regulating pluripotency of stem cells. The characteristics of EVs secreted by bovine embryos during the compaction period vary according to embryo competence. Embryos that reach the blastocyst stage secrete fewer and smaller vesicles. Furthermore, the loading of specific miRNAs into the EVs depends on embryo developmental competence.  相似文献   

13.
Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.  相似文献   

14.
Extracellular vesicles (EVs) are membranous, rounded vesicles released by prokaryotic and eukaryotic cells in their normal and pathophysiological states. These vesicles form a network of intercellular communication as they can transfer cell- and function-specific information (lipids, proteins and nucleic acids) to different cells and thus alter their function. Fungi are not an exception; they also release EVs to the extracellular space. The vesicles can also be retained in the periplasm as periplasmic vesicles (PVs) and the cell wall. Such fungal vesicles play various specific roles in the lives of these organisms. They are involved in creating wall architecture and maintaining its integrity, supporting cell isolation and defence against the environment. In the case of pathogenic strains, they might take part in the interactions with the host and affect the infection outcomes. The economic importance of fungi in manufacturing high-quality nutritional and pharmaceutical products and in remediation is considerable. The analysis of fungal EVs opens new horizons for diagnosing fungal infections and developing vaccines against mycoses and novel applications of nanotherapy and sensors in industrial processes.  相似文献   

15.
Extracellular vesicles (EVs) have brought great momentum to the non-invasive liquid biopsy procedure for the detection, characterization, and monitoring of cancer. Despite the common use of PSA (prostate-specific antigen) as a biomarker for prostate cancer, there is an unmet need for a more specific diagnostic tool to detect tumor progression and recurrence. Exosomes, which are EVs that are released from all cells, play a large role in physiology and pathology, including cancer. They are involved in intercellular communication, immune function, and they are present in every bodily fluid studied—making them an excellent window into how cells are operating. With liquid biopsy, EVs can be isolated and analyzed, enabling an insight into a potential therapeutic value, serving as a vehicle for drugs or nucleic acids that have anti-neoplastic effects. The current application of advanced technology also points to higher-sensitivity detection methods that are minimally invasive. In this review, we discuss the current understanding of the significance of exosomes in prostate cancer and the potential diagnostic value of these EVs in disease progression.  相似文献   

16.
17.
The incidence of bone-related disorders is continuously growing as the aging of the population in developing countries continues to increase. Although therapeutic interventions for bone regeneration exist, their effectiveness is questioned, especially under certain circumstances, such as critical size defects. This gap of curative options has led to the search for new and more effective therapeutic approaches for bone regeneration; among them, the possibility of using extracellular vesicles (EVs) is gaining ground. EVs are secreted, biocompatible, nano-sized vesicles that play a pivotal role as messengers between donor and target cells, mediated by their specific cargo. Evidence shows that bone-relevant cells secrete osteoanabolic EVs, whose functionality can be further improved by several strategies. This, together with the low immunogenicity of EVs and their storage advantages, make them attractive candidates for clinical prospects in bone regeneration. However, before EVs reach clinical translation, a number of concerns should be addressed. Unraveling the EVs’ mode of action in bone regeneration is one of them; the molecular mediators driving their osteoanabolic effects in acceptor cells are now beginning to be uncovered. Increasing the functional and bone targeting abilities of EVs are also matters of intense research. Here, we summarize the cell sources offering osteoanabolic EVs, and the current knowledge about the molecular cargos that mediate bone regeneration. Moreover, we discuss strategies under development to improve the osteoanabolic and bone-targeting potential of EVs.  相似文献   

18.
Extracellular vesicles (EVs) have been described as important mediators of cell communication, regulating several physiological processes, including tissue recovery and regeneration. In the kidneys, EVs derived from stem cells have been shown to support tissue recovery in diverse disease models and have been considered an interesting alternative to cell therapy. For this purpose, however, several challenges remain to be overcome, such as the requirement of a high number of EVs for human therapy and the need for optimization of techniques for their isolation and characterization. Moreover, the kidney’s complexity and the pathological process to be treated require that EVs present a heterogeneous group of molecules to be delivered. In this review, we discuss the recent advances in the use of EVs as a therapeutic tool for kidney diseases. Moreover, we give an overview of the new technologies applied to improve EVs’ efficacy, such as novel methods of EV production and isolation by means of bioreactors and microfluidics, bioengineering the EV content and the use of alternative cell sources, including kidney organoids, to support their transfer to clinical applications.  相似文献   

19.
Tumor necrosis factor-alpha (TNF-α) is a multifunctional Th1 cytokine and one of the most important inflammatory cytokines. In pregnancy, TNF-α influences hormone synthesis, placental architecture, and embryonic development. It was also shown that increased levels of TNF-α are associated with pregnancy loss and preeclampsia. Increased TNF-α levels in complicated pregnancy draw attention to trophoblast biology, especially migratory activity, syncytialisation, and endocrine function. Additionally, elevated TNF-α levels may affect the maternal-fetal relationship by altering the secretory profile of placental immunomodulatory factors, which in turn affects maternal immune cells. There is growing evidence that metabolic/pro-inflammatory cytokines can program early placental functions and growth in the first trimester of pregnancy. Furthermore, early pregnancy placenta has a direct impact on fetal development and maternal immune system diseases that release inflammatory (e.g., TNF-α) and immunomodulatory factors, such as chronic inflammatory rheumatic, gastroenterological, or dermatological diseases, and may result in an abnormal release of cytokines and chemokines in syncytiotrophoblasts. Pregnancy poses a challenge in the treatment of chronic disease in patients who plan to have children. The activity of the disease, the impact of pregnancy on the course of the disease, and the safety of pharmacotherapy, including anti-rheumatic agents, in pregnancy should be considered.  相似文献   

20.
Urinary extracellular vesicles (EVs) and their RNA cargo are a novel source of biomarkers for various diseases. We aimed to identify the optimal method for isolating small (<200 nm) EVs from human urine prior to small RNA analysis. EVs from filtered healthy volunteer urine were concentrated using three methods: ultracentrifugation (UC); a precipitation-based kit (PR); and ultrafiltration (UF). EVs were further purified by size-exclusion chromatography (SEC). EV preparations were analysed with transmission electron microscopy (TEM), Western blotting, nanoparticle tracking analysis (NTA) and an Agilent Bioanalyzer Small RNA kit. UF yielded the highest number of particles both before and after SEC. Small RNA analysis from UF-concentrated urine identified two major peaks at 10–40 nucleotides (nt) and 40–80 nt. In contrast, EV preparations obtained after UC, PR or SEC combined with any concentrating method, contained predominantly 40–80 nt sized small RNA. Protein fractions from UF+SEC contained small RNA of 10–40 nt in size (consistent with miRNAs). These data indicate that most of the microRNA-sized RNAs in filtered urine are not associated with small-sized EVs, and highlights the importance of removing non-vesicular proteins and RNA from urine EV preparations prior to small RNA analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号