首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kitchen cutting boards are one common source of microbial cross-contamination in foods. In this study, a method was developed to create an antimicrobial coating on HDPE cutting board using UV-activated TiO2 nanoparticles (NPs). The antimicrobial efficacy of the developed coatings was tested against E. coli O157: H7 for 3 h at 0.5 ± 0.05 mW/cm2 UVA light intensity. In addition, the effect of NP loading (0.0125, 0.0625, and 0.125 mg/cm2), and surface treatment of coatings by oxygen plasma for 1–15 min on the bactericidal efficacy was investigated. Further, the bactericidal efficacy of the TiO2 coated cutting board on repeated use (i.e. 1, 2, 3 and 5 times) was also evaluated. The results showed that by increasing the NP loading from 0 to 0.125 mg/cm2 has increased the log reduction from 0.37 to 1.18 CFU/cm2. However, no significant difference (P > 0.05) in the reduction was observed between NP loadings at 0.0625 and 0.125 mg/cm2. Oxygen plasma treatment of the coated surfaces for 5–15 min significantly increased (P ≤ 0.05) the log reduction compared to control sample without plasma treatment. Under the tested conditions, TiO2 coating with 0.0625 mg/cm2 NP loading followed by oxygen plasma treatment for 5 min was found to achieve the greatest reduction up to 2.67 log CFU/cm2. Also, the coated-surfaces were found to retain the original bactericidal property even after up to 5 times washing treatment. The developed TiO2 coating on cutting board showed promise to mitigate the risk of microbial cross-contamination by providing a stable antimicrobial activity for extended use. Plasma treatment further enhanced the bactericidal property of the developed coatings without affecting physical stability.  相似文献   

2.
The anti-listerial properties of biodegradable polylactide coatings modified with titanium dioxide have been studied. Free standing films were prepared by casting solutions prepared from titanium dioxide and previously extruded polylactide. It was demonstrated that polylactide alone could support 2.84 ± 0.10 log CFU reduction of Listeria monocytogenes when incubated at 23 °C for 2 h. However, the log reduction for Listeria could be increased to >4 log CFU with titanium dioxide:polylactide composites illuminated with UV-A. The inactivation kinetics of L. monocytogenes followed a diphasic die-off with an initial 30 min lag period then a progressive decline in bacterial levels over a further 90 min period. The anti-listeria effect of polylactide:titanium dioxide films was dependent on illumination with UV-A but independent on the concentration of TiO2 incorporated in the film within the range of 1–5% w/w. The mode of L. monocytogenes inactivation was via direct contact of the pathogen with the polylactide, in addition to the generation of oxygen radicals produced by excitation of the titanium dioxide. The composite film illuminated with UV-A was equally effective against Salmonella Typhimurium and Shiga toxin producing Escherichia coli. The coating was stable to 5 repeated sanitation cycles consisting of detergent and sodium hypochlorite rinses. The polylactide-titanium dioxide coating shows potential as an antimicrobial coating although further work is required to assess if the protective film can function under commercial conditions.  相似文献   

3.
Edible antimicrobial coating solutions incorporating chitosan, lauric arginate ester (LAE) and nisin were developed to reduce foodborne pathogen contamination on ready-to-eat (RTE) meats. RTE deli meat samples were directly coated with the solutions, or treated with solution-coated polylactic acid (PLA) films. The antimicrobial efficacy of the coatings and films against Listeria innocua inoculated onto the surface of RTE meat samples was investigated. Antimicrobial coatings with 1.94 mg/cm2 of chitosan and 0.388 mg/cm2 of LAE reduced L. innocua by ca. 4.5 log CFU/cm2. Nisin (486 IU/cm2) showed less effectiveness than LAE (0.388 mg/cm2) and addition of nisin to the antimicrobial coatings or films containing LAE (0.388 mg/cm2) did not enhance the total antimicrobial effectiveness. Combining antimicrobial coatings or films with flash pasteurization (FP), which uses short burst of steam under pressure, further reduced L. innocua, achieving over a 5 log reduction. There was no significant difference in the effectiveness of antimicrobial films versus the coatings (p > 0.05). These data show the potential use of antimicrobial packaging alone, or in combination with FP, in preventing foodborne illness due to post-processing contamination of RTE meat products.  相似文献   

4.
Biofilms on steel surfaces containing Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 continue to threaten dairy and meat processors. In this study, the ability of scallop shell powder (SSP) to remove biofilms formed by these three pathogens on stainless steel plates was examined. Whey powder solution (WPS) and bench wash water (BWW) provided by dairy and meat factories, respectively, were inoculated with L. monocytogenes, S. aureus or E. coli O157:H7 (9 log10 CFU/ml). Stainless steel plates (10 cm2) were placed in the inoculated fluids and incubated at 20 °C at 48 h to form biofilms. After drying and washing in sterile water, the plates were treated with 0.0, 0.25, or 0.50% (w/v) SSP slurries for 1, 5, or 10 min and then quantitatively examined for the three pathogens. Both 0.25 and 0.50% SSP reduced L. monocytogenes on the plates by 4 log CFU/cm2 with a 1 min exposure to 0.50% SSP decreasing S. aureus by 5 logs CFU/cm2. After 1 min in 0.25 and 0.50% SSP, E. coli O157:H7 populations in WPS and BWW biofilms decreased 4 and 6 log CFU/cm2 and 3 and 5 log CFU/cm2, respectively. Increasing the concentration of SSP led to significantly increased efficacy against the tested pathogens (P < 0.05). In conclusion, this study showed that SSP slurries could significantly reduce the numbers of L. monocytogenes, S. aureus and E. coli O157:H7 in biofilms on stainless steel surfaces.  相似文献   

5.
Antimicrobial effect of vacuum impregnation (VI) applied to organic acid washing against Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes on paprika fruit, carrots, king oyster mushrooms and muskmelons was investigated. Samples were treated with intermittent VI with 21.3 kPa and compared with dipping washing in 2% malic acid. The initial sample pathogen levels were approximately 105–107 CFU/cm2. Enumerations of the three pathogens on paprika and carrots treated with VI washing were reduced to below the detection limit (= 1 log10 CFU/cm2) after 3–5 min and 15–20 min, respectively. For each time point where populations of the three pathogens were reduced to below the detection limit by VI treatment, populations of 1.2–1.9 log CFU/cm2 and 2.5 to 2.8 log CFU/cm2 survived on paprika and carrots, respectively, when subjected to dipping treatment. After 20 min of dipping treatment, surviving populations of the three pathogens ranged from 3.5 to 4.1 and 3.3 to 4.4 log CFU/cm2 on king oyster mushrooms and muskmelons, respectively. After 20 min of VI treatment, surviving populations of the three pathogens ranged from 3.0 to 3.6 log and 3.1 to 4.1 log CFU/cm2, respectively, on king oyster mushrooms and muskmelons. Additionally, there were no significant (P ≥ 0.05) differences in pathogen reductions between dipping and VI treatment for both king oyster mushrooms and muskmelons. King oyster mushrooms (Ra = 6.02 ± 1.65 μm) and muskmelons (Ra = 11.43 ± 1.68 μm) had relatively large roughness values compared to those of paprika (Ra = 0.60 ± 0.10 μm) and carrots (Ra = 2.51 ± 0.50 μm). Scanning electron photomicrographs showed many deep protected sites in king oyster mushrooms and muskmelons with many microbes located deep in these sites following VI treatment. Instrumental color, texture and titratable acidity values of paprika and carrots subjected to VI washing treatment with 2% malic acid for 5 and 20 min were not significantly (P ≥ 0.05) different from those of untreated control samples during 7 day storage.  相似文献   

6.
《Food Control》2007,18(1):1-4
The simplification of the cleaning process of plastic containers used in the storage and/or distribution of fruits or vegetables is important. We coated a plastic container with an apatite-coated titanium dioxide photocatalyst (TiO2–Ap container), and examined its disinfecting efficacy under UV irradiation from black light. The disinfecting efficacy of the TiO2–Ap container on diluted drops evaporated from spinach (suspension) was examined. Changes in the microbial populations of the total aerobic bacteria, coliform bacteria, and moulds and yeasts in the TiO2–Ap container were assayed at 25 °C for 24 h (UV-A intensity of 0.2 and 0.4 mW cm−2). The results showed that all of the microbial populations in the TiO2–Ap container decreased with irradiation time and then reduced to uncountable levels. It was found that the increase in UV-A intensity enhanced the disinfecting efficacy.  相似文献   

7.
Combined non-thermal treatment with chlorine dioxide (ClO2) gas, ultraviolet-C (UV-C) light, and fumaric acid was performed to inactivate Listeria monocytogenes and Escherichia coli O157:H7 inoculated on plums. Plums were treated with ClO2 gas (15 and 30 ppmv), fumaric acid (0.1, 0.3, and 0.5%), and by UV-C irradiation (3, 5, and 10 kJ/m2). The single treatments with 15 or 30 ppmv ClO2 gas, 0.5% fumaric acid, and 10 kJ/m2 UV-C decreased the population of L. monocytogenes by 1.78, 2.00, 1.65, and 1.62 log CFU/g, respectively, and the population of E. coli O157:H7 by 1.73, 1.81, 1.34, and 2.07 log CFU/g, respectively. In addition, combined treatments reduced the populations of the pathogenic bacteria more than each treatment alone. In particular, the combined treatment with ClO2 gas (30 ppmv) for 20 min, fumaric acid (0.5%), and UV-C (10 kJ/m2) decreased the populations of L. monocytogenes and E. coli O157:H7 by 6.26 and 5.48 log CFU/g, respectively. These results suggest that combined treatment with ClO2 gas, UV-C light, and fumaric acid may be a useful hurdle technology to enhance the microbiological safety of plums.  相似文献   

8.
The bactericidal efficacy of acidic electrolyzed oxidizing water (AC-EW) (pH = 2.30, free chlorine = 38 ppm) and sterile distilled water (DW) on three pathogens (Escherichia coli O157:H7 Salmonella Typhimurium, and Listeria monocytogenes) inoculated on raw trout skin, chicken legs and beef meat surfaces was evaluated. The decontaminating effect of AC-EW and DW was tested for 0 (control), 1, 3, 5 and 10 min at 22 °C. AC-EW significantly (P < 0.05) reduced the three pathogens in the inoculated samples compared to the control and DW. The level of reduction ranged between ca.1.5–1.6 logs for E. coli O157:H7 and S. Typhimurium in the inoculated foods. However, AC-EW exhibited less bactericidal effect against L. monocytogenes (1.1–1.3 logs reduction). AC-EW elicited about 1.6–2.0 log reduction in the total mesophilic count. Similar treatment with DW reduced pathogens load by ca. 0.2–1.0 log reduction and total mesophiles by ca. 0.5–0.7 logs. No complete elimination of the three pathogens was obtained using AC-EW possibly because of the level of organic matter and blood moving from food samples to the AC-EW solution. This study demonstrates that AC-EW could considerably reduce common foodborne pathogens in fish, chicken and beef products.  相似文献   

9.
The suitability of high power ultrasound (HPU, 20 kHz, 0.28 kW/l) combined with residual chemical sanitizers for water reconditioning was studied. A synergetic disinfection effect was observed when HPU was combined with peroxyacetic acid (PAA) or a commercial mix of organic acids and phenolic compounds (OA/PC). In recycled water (RW) with a chemical oxygen demand (COD) of 500 mg O2/l, PAA inactivated 2 log units of Escherichia coli O157:H7 at concentrations of 3.2, 6.4, 16 mg/l after 7 min, 2 min, 29 s, respectively. The OA/PC or HPU treatments alone needed 26 min treatments to achieve the same reduction. The addition of TiO2 (5 g/l) to HPU (sonocatalysis) did not improve E. coli O157:H7 inactivation. However, when HPU was combined with a residual concentration of PAA (3.2 mg/l), the total inactivation of E. coli O157:H7 and Salmonella (6 log unit reductions) occurred after 11 min, but for Listeria monocytogenes only 1.7 log reductions were detected after 20 min. When HPU was combined with OA/PC, a synergistic effect for the inactivation of E. coli O157:H7 was also observed, but this sanitizer significantly modified the physical-chemical quality characteristics of the RW. These results show that the residual PAA concentration that can be found in the wash water combined with HPU could result in an environmentally friendlier and toxicologically safer strategy for water reconditioning of the fresh-cut industry. The use of the sanitizer alone requires higher concentrations and/or longer contacts times. Even though the residual PAA in combination with HPU was adequate for water reconditioning, it is not appropriate for the process wash water because this wash water must be instantaneously disinfected.  相似文献   

10.
Minimally processed baby spinach contaminated with Escherichia coli O157:H7 has been associated with multiple outbreaks of foodborne illnesses recently. Chlorinated water is widely used to wash vegetables commercially, but this washing procedure has limited efficacy and can lead to the formation of carcinogenic substances. This study was conducted to determine the effects of organic acids and hydrogen peroxide alone and in binary combinations with or without mild heat (40 and 50 °C) on the inactivation of Escherichia coli O157:H7 on baby spinach. Baby spinach leaves were dip-inoculated with E. coli O157:H7 to a level of 6 log CFU/g and stored at 4 °C for 24 h before treatment. Individual washing solutions (1% and 2% lactic acid [LA], citric acid [CA], malic acid [MA], tartaric acid [TA], acetic acid [AA], hydrogen peroxide [H2O2] as well as binary combinations of LA, CA, MA and H2O2 at final concentrations of 1% were used to decontaminate spinach leaves at 22, 40 or 50 °C for 2–5 min to test their efficacy in reducing E. coli O157:H7. Chlorinated water (200 ppm free chlorine) decreased the population of E. coli O157:H7 on baby spinach by only 1.2–1.6 log CFU/g, which was not significantly different from DI water washing. Washing with 1% LA at 40 °C for 5 min was the most effective treatment achieving a 2.7 log reduction of E. coli O157:H7 which is significantly higher than chlorine washing. Washing with LA + CA or LA + HP at 40 °C for 5 min was equally effective against E. coli O157:H7, resulting in a 2.7 log reduction of E. coli O157:H7. The application of mild heat significantly enhanced the efficacy of washing solutions on the inactivation of E. coli O157:H7. There was, however, no significant difference between treatments at 40 °C for 5 min and 50 °C for 2 min. The results suggested that the use of organic acids in combination with mild heat can be a potential intervention to control E. coli O157:H7 on spinach.  相似文献   

11.
Escherichia coli O157:H7 and Salmonella spp. often contaminate fresh beef. In Japan, an E coli outbreak caused by raw beef made 181 people ill and 5 individuals dead in 2011. Responding to this outbreak, an effective sterilization method for fresh beef is expected to be developed. In this study, ε-polylysine combined with CO2-packaging method was examined for controlling these pathogens in fresh beef. At an incubation temperature of 4 °C, approximately 4.3 log and 2.4 log reduction in bacterial numbers were observed after 7-day incubation for E. coli O157:H7 and Salmonella, respectively, in ε-polylysine-added beef. When effectiveness of CO2-packaging combined with ε-polylysine was investigated, CO2 did not have additional inhibiting effect on bacterial growth compared to only-ε-polylysine-treated samples when incubated at 4 °C. However, effectiveness of CO2 was observed when incubated at 10 °C where approximately 2.9 log and 4.4 log reduction in E. coli cell numbers were observed in only-ε-polylysine-treated samples and polylysine- and CO2-treated group, respectively, and approximately 1.7 log and 3.5 log reduction in Salmonella cell numbers were observed in only-ε-polylysine-treated samples and polylysine and CO2-treated group, respectively. This study confirmed that ε-polylysine or ε-polylysine combined with CO2 packaging are effective in preventing foodborne diseases caused by raw beef.  相似文献   

12.
The effectiveness of bacteriocin-producing Lactobacillus curvatus CRL705 and Lactococcus lactis CRL1109 in combination with Na2EDTA on frozen ground-beef patties contaminated with Escherichia coli O157:H7, was investigated under temperature abuse conditions (5 °C during 9 days). The presence of the bioprotective cultures (ca. 107 CFU/g) and chelator (48 mM) resulted in one log CFU/g reduction for E. coli strain, compared to the control on day 0. Similarly, a significant decline for indigenous coliforms in ground-beef patties was also observed in the presence of bacteriocinogenic strains and chelator. However, in the absence of Na2EDTA, neither E. coli nor coliforms were inhibited by the bioprotective cultures, the pathogen reaching similar counts than control samples (5.22 and 3.60 log CFU/g, respectively) at 9 days. When the growth of bacteriocinogenic strains on patties was evaluated, they were able to increase their population producing bacteriocins after 48 h up to the end of incubation period while a near neutral pH in the presence of Na2EDTA was detected. Non substantial effect on of ground-beef patties color was produced in the presence of bioprotective cultures, while a darker color developed in those added with the chelator. The simultaneous treatment with bioprotective cultures and Na2EDTA may be of value for the control of E. coli O157:H7 in temperature abused ground-beef patties.  相似文献   

13.
《Food Control》2013,33(2):626-631
The effects of hardness and pH of water used to prepare electrolyzed oxidizing (EO) water and bleach solutions on the bactericidal activity of sanitizer prepared from the water were examined. EO water and bleach solutions were prepared with hard water of 0, 50, 100, and 200 mg/l as CaCO3 at pH 5, 6, 7, and 8. Increased water hardness tended to increase free chlorine and oxidation–reduction potential (ORP) and decrease pH of EO water. Chlorine levels also increased with water pH. Water hardness and pH only had minor effect on the pH of bleach solutions. Increasing hardness to 50 mg/l increased antimicrobial effect of EO water against Escherichia coli O157:H7, but reduced when water hardness further increased to 100 mg/l or higher. Water pH had no effect on EO water produced against E. coli O157:H7. Water hardness had no significant effect on bactericidal activity of EO water against Listeria monocytogenes but elevated water pH decreased bactericidal activity of EO water produced against L. monocytogenes. Bleach solution prepared using hard water at 200 mg/l or at pH 7 or higher had significant lower efficacy in inactivating E. coli O157:H7, but had no effect on the inactivation of L. monocytogenes. Results indicate that increasing the hardness or pH of water used to prepare EO water or bleach solutions will decrease the bactericidal activity of sanitizers prepared from the water.  相似文献   

14.
《Food Control》2007,18(4):346-351
The interior surfaces of household refrigerators are at risk of becoming contaminated with foodborne pathogens, increasing the risks of cross-contamination to other food items, including higher risk ready-to-eat foods. This study determined the incidence of a number of significant foodborne pathogens, and the general hygienic status (as estimated by total viable counts (TVCs), and total coliform counts (TCCs)) on the interior surfaces of domestic refrigerators (n = 342). Campylobacter spp., Salmonella spp. and Escherichia coli O157:H7 were not recovered from any refrigerators, but Staphylococcus aureus was recovered from 6.4%, Listeria monocytogenes and E. coli from 1.2% and Yersinia enterocolitica from 0.6% of examined refrigerators. As the recovered species can survive and grow under refrigeration or conditions of mild temperature abuse, such pathogens may transfer to (and develop to clinically significant numbers in) food in domestic fridges. Such risks are of particular concern in relation to “ready-to-eat” foods, which will not receive further bactericidal treatments (cooking) before consumption. The study estimated TVCs ranging from 2.91 log10 cfu/cm2 to 8.78 log10 cfu/cm2 and TTCs ranging from 0.045 log10 cfu/cm2 to 5.96 log10 cfu/cm2 indicating very poor standards of consumer refrigerator management and hygiene, and posing risks to consumer health. The study findings highlight the importance of adequate temperature control and thorough, regular cleaning of domestic refrigerators to ensure food safety, and of effective cooking as the last link in the domestic food service chain.  相似文献   

15.
The objective of this study was to evaluate the antibacterial effect of 405 ± 5 nm light emitting diode (LED) on Escherichia coli O157:H7, Salmonella Typhimurium and Shigella sonnei. Its antibacterial mechanism was also investigated by determining the permeability of bacterial membrane and DNA degradation. Bacterial strains in phosphate-buffered saline were exposed to 405 ± 5 nm LED to a final dose of 486 J/cm2 (7.5 h) at 4 °C. The inactivation curves were fitted by Weibull model to compare the sensitivities of pathogens to the LED illumination by calculating the decimal reduction times (tR). The bacterial sensitivity to bile salts and NaCl by LED illumination was also determined. LIVE/DEAD® BacLight™ staining as well as comet assay and DNA ladder analysis were carried out to determine the bacterial membrane integrity and DNA degradation, respectively. Results showed that LED illumination inactivated 1.0, 2.0, and 0.8 log CFU/ml for E. coli O157:H7, S. Typhimurium, and S. sonnei for 7.5 h, respectively. The comparison of tR values demonstrated that S. Typhimurium was found to be the most (P < 0.05) susceptible strain to LED illumination. Regardless of the bacterial strain, the sensitivity of illuminated bacterial cells to bile salts and NaCl considerably increased compared to non-illuminated controls. Furthermore, LIVE/DEAD® assay clearly showed that LED illumination resulted in loss of bacterial membrane permeability. On the other hand, no DNA degradation was observed by both comet assay and DNA ladder analysis. Therefore, these results suggest that the antibacterial effect of 405 ± 5 nm LED might be partly attributed to the physical damage to bacterial cell membrane. This study proposes that 405 ± 5 nm LED under refrigerated conditions may be effective to control the pathogens on foods.  相似文献   

16.
The goal of this study was to evaluate the efficacy of a novel antimicrobial solution made with chitosan, lauric arginate ester, and organic acids on Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and non-O157 shiga toxin-producing E. coli cocktails and to test its potential to be used as a marinade for raw beef. Fresh beef top round steaks were surface-inoculated with the pathogen cocktails at approximately 2.5 or 4.5 Log CFU/cm2, marinated with the antimicrobial solution (AMS), and then stored at 4 °C for 6, 24, and 48 h. Three commercially available marinades were used for comparison. Results revealed that AMS had the most antimicrobial effect regardless of the type or inoculation level of pathogens (P < 0.05). After 6 h, the AMS marination reduced all pathogens to levels below the limit of detection (<1 Log CFU/cm2), resulting in a 3.5 Log CFU/cm2 reduction. When AMS was diluted with autoclaved distilled water by 5 times (AMS 1:5) or 10 times (AMS 1:10), its antimicrobial efficacy was impacted by marination time, the inoculated pathogens, and the inoculation levels. This study demonstrates that the developed antimicrobial solution has a great potential to be used during marination by consumers to ensure better food safety.  相似文献   

17.
《Food Control》2014,35(2):372-377
The photocatalytic degradation of methylene blue (MB) and inactivation of Gram-negative bacteria Escherichia coli (generic) and Pseudomonas aeruginosa by TiO2 nanoparticles in aqueous suspension were studied. TiO2 resulted in significant reduction in MB absorption and a shift of MB absorption peak from 664 nm to 658 nm after a short time of irradiation. The maximum degradation of MB was observed when the concentration of TiO2 in the aqueous suspension was 0.5 g L−1. TiO2 was also very effective with inhibiting growth of both Gram-negative bacteria E. coli and P. aeruginosa, although it took more than 60 min to observe the inactivation effects. The photocatalytic inactivation toward E. coli and P. aeruginosa by TiO2 showed a similar trend with much higher effectiveness toward E. coli under the same experimental conditions. The inactivation kinetic behaviors could be explained by the modified Langmuir–Hinshelwood model, and well fitted to a pseudo-first order kinetic equation. The reaction rate constant for E. coli and P. aeruginosa were 7.768 × 106 cfu mL−1 min−1 and 5.655 × 106 cfu mL−1 min−1, respectively. The adsorption equilibrium constant for E. coli was 1.053 × 10−8 mL cfu−1, while it was 1.438 × 10−8 mL cfu−1 for P. aeruginosa. These results further demonstrate that in an aqueous system, TiO2 nanoparticles can effectively both degrade organic compounds and inhibit Gram-negative bacteria under UVA light. Compared with the degradation activity of TiO2 toward organic compounds, its antimicrobial activity against Gram-negative bacteria would be delayed by 60 min. The antimicrobial activity of TiO2 against Gram-negative bacteria could vary with bacterial species.  相似文献   

18.
19.
《Food Control》2013,31(2):575-579
The effects of previous cold-induced cell elongation on adherence of Escherichia coli O157:H7 to glass slides and stainless steel surfaces was evaluated at 4 °C for ≤48 h. Planktonic E. coli O157:H7 with and without cold adaptation were prepared at 15 and 37 °C, respectively, and planktonic E. coli O157:H7 containing elongated (>4 ≤ 10 μm) and filamentous (>10 μm) cells were prepared at 6 °C. Despite morphological differences in planktonic E. coli O157:H7 preparations, all three cell types attached to a greater extent to glass than to the stainless steel surfaces. E. coli O157:H7 cells adapted to growth at 15 °C attached better to both glass and stainless steel surfaces (3.2 and 2.6 log cfu/cm2, respectively) than cells of the other treatments at ≥24 h. Cells adapted at 6 °C attached to glass slides and stainless steel coupons at levels of 3.0 and 1.8 log cfu/cm2, respectively, while E. coli O157:H7 cells grown at 37 °C attached to these surfaces at levels of 2.0 and 1.7 log cfu/cm2, respectively. No further attachment of cells from any of the treatments was noted between 24 and 48 h at 4 °C. These results suggest that E. coli O157:H7 cells adapted at 6 °C–15 °C have greater potential to attach to food contact surfaces than those grown at higher temperature. The enhanced biofilm-forming ability of 6 °C or 15 °C-adapted, elongated and filamentous E. coli O157:H7 cells did not appear to be related to the greater entanglement of longer cells within biofilm matrices.  相似文献   

20.
Listeria monocytogenes can persist and form biofilms in a food environment which are difficult to eradicate because biofilms are inherently resistant to a variety of antimicrobial treatments. Therefore, alternative approaches such as bacteriophages have been suggested as a promising biocontrol agent against biofilms. The aim of this study was to evaluate the efficacy of a cocktail bacteriophage product (ListShield™) against L. monocytogenes biofilms. These biofilms were established on lettuce, stainless steel, rubber, and a MBEC biofilm device and exposed to the ListShield™ phage preparation (1 × 108 PFU/mL) for 2 h. ListShield™ had sufficient potency to significantly reduce the biofilm (P < 0.05) in all cases. Biofilm reduction achieved after ListShield™ treatment on the stainless steel coupon was 1.9–2.4 log CFU/cm2 and on the rubber surface approximately 1.0 log CFU/cm2. Phage application on lettuce inactivated biofilm bacteria up to 0.7 log CFU/cm2. These results suggest that bacteriophage preparation ListShield™ is an effective tool for the inactivation of L. monocytogenes biofilms in the food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号