首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a flow standard for gas flows in the range from 0.01 sccm to 100 sccm with a relative standard uncertainty (68% confidence) of 0.03% at 1 sccm (1 sccm≡1 cm3/min of an ideal gas at 101325 Pa and 0 °C ≈ 0.74358 μmol/s). The flow standard calibrates a secondary meter by withdrawing a piston from a cylinder held at constant pressure P while gas flows from the secondary meter into the cylinder. The flow standard can operate anywhere in the range 10 kPa<P<300 kPa, and it can act as a flow source as well as a flow receiver. The flow standard incorporated features that improved its convenience and lowered its cost without sacrificing accuracy, specifically (1) dry sliding seals made with commercially available, easily replaced, o-rings, (2) a compact design based on a commercially available, hollow piston, and (3) a linear encoder with a small Abbe error.  相似文献   

2.
We demonstrate a simultaneous distributed strain and temperature measurement technique with the spatial resolution of 1 mm using fiber Bragg gratings inscribed in a polarization-maintaining and absorption-reducing fiber (PANDA-FBGs) and optical frequency domain reflectometry (OFDR). We conduct four-point bending tests in an environmental chamber. Using high birefringent PANDA-FBGs that are manufactured specifically for the simultaneous measurements, the uniform temperature distributions and the typical strain distribution profiles of the four-point bending tests were successfully obtained. The measurement errors of strain were from −31 με to 19 με, and of temperature were from −0.9 °C to 1.3 °C. The spatial standard deviation was 7.5 με and 0.9 °C. We also discussed the effect of the residual strain of the sensor-bonding procedures and the data averaging.  相似文献   

3.
This paper presents the design and calibration of an ISO non-compliant orifice plate flowmeter whose intended use is for respiratory function measurements in the bidirectional air flow range ±9 L/min.The novelty of the proposed sensor consists of a plate beveled in both upstream and downstream sides: a symmetrical geometry is adopted in order to perform bidirectional measurements of flow rate. A mathematical model is introduced to quantify the influence of temperature on the sensor output. Four different positions of the pressure static taps are evaluated in order to maximize bidirectionality. An index is also introduced in order to quantitatively estimate the anti-symmetry of the sensor's response curve.Trials are carried out to evaluate the influence on sensor output of air temperatures (22 °C, 30 °C and 37 °C) at different values of relative humidity (5%, 55% and 85%). Experimental data show a quite good agreement with the theoretical model (R2>0.98 in each condition).The influence of air temperature on the sensor output is minimized by introducing a correction factor based on the theoretical model leading to measurement repeatability better than 2% in overall range of calibration. The mean sensitivity in the calibration range is about 2 kPa L−1·min allowing to obtain a sensor discrimination threshold lower than 0.2 L/min in both directions. The time constant of the whole measurement system, equal to 2.40±0.03 ms, leads to a bandwidth up to 80 Hz making the sensor suitable for respiratory function measurements.  相似文献   

4.
D. Roy  S.S. Singh  B. Basu  W. Lojkowski  R. Mitra  I. Manna 《Wear》2009,266(11-12):1113-1118
Resistance to wear is an important factor in design and selection of structural components in relative motion against a mating surface. The present work deals with studies on fretting wear behavior of in situ nano-Al3Ti reinforced Al–Ti–Si amorphous/nanocrystalline matrix composite, processed by high pressure (8 GPa) sintering at room temperature, 350, 400 or 450 °C. The wear experiments were carried out in gross slip fretting regime to investigate the performance of this composite against Al2O3 at ambient temperature (22–25 °C) and humidity (50–55%). The highest resistance to fretting wear has been observed in the composites sintered at 400 °C. The fretting wear involves oxidation of Al3Ti particles in the composite. A continuous, smooth and protective tribolayer is formed on the worn surface of the composite sintered at 400 °C, while fragmentation and spallation leads to a rougher surface and greater wear in the composite sintered at 450 °C.  相似文献   

5.
Within the framework of a research project regarding investigations on a high-pressure Coriolis mass flow meter (CMF) a portable flow test rig for traceable calibration measurements of the flow rate (mass - and volume flow) in a range of 5 g min−1 to 500 g min−1 and in a pressure range of 0.1 MPa to 85 MPa was developed. The measurement principle of the flow test rig is based on the gravimetrical measuring procedure with flying-start-and-stop operating mode. Particular attention has been paid to the challenges of temperature stability during the measurements since the temperature has a direct influence on the viscosity and flow rate of the test medium. For that reason the pipes on the high-pressure side are double-walled and insulated and the device under test (DUT) has an enclosure with a separate temperature control. From the analysis of the first measurement with tap water at a temperature of 20 °C and a pressure of 82.7 MPa an extensive uncertainty analysis has been carried out. It was found that the diverter (mainly due to its asymmetric behaviour) is the largest influence factor on the total uncertainty budget. After a number of improvements, especially concerning the diverter, the flow test rig has currently an expanded measurement uncertainty of around 1.0% in the lower flow rate range (25 g min−1) and 0.25% in the higher flow rate range (400 g min−1) for the measurement of mass flow. Additional calibration measurements with the new, redesigned flow test rig and highly viscous base oils also indicated a good agreement with the theoretical behaviour of the flow meter according to the manufacturers׳ specifications with water as test medium. Further improvements are envisaged in the future in order to focus also on other areas of interest.  相似文献   

6.
The back-propagation (BP) and generalized regression neural network models (GRNN) were investigated to predict the thin layer drying behavior in municipal sewage sludge during hot air forced convection. The accuracy of the BP model to predict the moisture content of the sewage sludge thin layer during hot air forced convective drying was far higher than that of the GRNN model. The GRNN models could automatically determine the best smoothing parameters, which were 0.6 and 0.3 for predicting the moisture content and average temperature, respectively. The model type for predicting the average temperature of the sewage sludge thin layer was selected for different sample groups by comparing their MSE values or R2 values. The GRNN model was suitable for predicting the average temperature corresponding to the sample groups at hot air velocity of 0.6 m/s, and drying temperatures of 100 °C, 160 °C; hot air velocity of 1.4 m/s, and drying temperatures of 130 °C, 140 °C; hot air velocity of 2.0 m/s, and drying temperatures of 150 °C, 160 °C. The average temperature for the other sample groups was best predicted by the BP model.  相似文献   

7.
In some applications, luminescence dating needs performing studies above 550 °C and conventional or commercial instruments are not always perfectly adapted to this temperature range. We describe here an automated instrument capable of thermoluminescence and optically stimulated luminescence measurements. Main mechanical and digital design is reported showing the technical options leading to both a low cost of fabrication and good high temperature performances. The mechanical design favors simply shaped parts and uses a 3D-CAD software that can drive a numerically controlled milling machine. Besides, electronics is limited to elementary signal conditioning (for photomultiplier and thermocouple) and the more complex functions (as thermal regulation) are performed with softwares running on a standard PC. A fully automated prototype instrument was built using these options. This confirmed the low cost of fabrication and the possibility of measurements up to 800 °C and of withstanding temperatures higher than 600 °C for several minutes.  相似文献   

8.
《Wear》2006,260(9-10):919-932
The variation in wear behaviour during limited debris retention sliding wear of Nimonic 80A versus Stellite 6 (counterface) between room temperature and 750 °C, at sliding speeds of 0.314, 0.654 and 0.905 m s−1, was investigated. At 0.314 m s−1, mild oxidational wear was observed at all temperatures, due to transfer and oxidation of Stellite 6-sourced debris to the Nimonic 80A and resultant separation of the Nimonic 80A and Stellite 6 wear surfaces. Between room temperature and 450 °C, this debris mostly remained in the form of loose particles (with only limited compaction), whilst between 510 and 750 °C, the particles were compacted and sintered together to form a wear protective ‘glaze’ layer.At 0.654 and 0.905 m s−1, mild oxidational wear due to transfer and oxidation of Stellite 6-sourced debris was only observed at room temperature and 270 °C (also 390 °C at 0.654 m s−1). At 390 °C (450 °C at 0.654 m s−1) and above, this oxide was completely absent and ‘metal-to-metal’ contact resulted in an intermediate temperature severe wear regime—losses in the form of ejected metallic debris were sourced almost completely from the Nimonic 80A. Oxide debris, this time sourced from the Nimonic 80A sample, did not reappear until 570 °C (630 °C at 0.654 m s−1), however, were insufficient to eliminate completely severe wear until 690 and 750 °C. At both 0.654 and 0.905 m s−1, the oxide now preventing severe wear at 690 and 750 °C tended not to form ‘glaze’ layers on the surface of the Nimonic 80A and instead supported continued high wear by abrasion. This abrasive action was attributed to the poor sintering characteristics of the Nimonic 80A-sourced oxide, in combination with the oxides’ increased mobility and decreased residency.The collected data were used to compose a simple wear map detailing the effects of sliding speed and temperature on the wear of Nimonic 80A slid against Stellite 6, at these speeds and temperatures of between room temperature and 750 °C.  相似文献   

9.
《Tribology International》2012,45(12):1902-1919
Wear variations of Nimonic 80A slid against Incoloy 800HT between room temperature (RT) and 750 °C, and sliding speeds of 0.314 and 0.905 m s−1 were investigated using a ‘reciprocating-block-on-cylinder’, low debris retention configuration. These were considered alongside previous observations at 0.654 m s−1.Different wear types occurring were mapped, including high transfer ‘severe wear’ (RT and 270 °C, also 0.905 m s−1 at ≤570°C), low transfer ‘severe wear’ (0.314 m s−1 at 390 °C to 510 °C oxide abrasion assisted at 510 °C), and ‘mild wear’ (0.314 m s−1 at ≥570 °C; 0.905 m s−1 at ≥630 °C). Wear surfaces at 750 °C were cross-sectioned and profiled.  相似文献   

10.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

11.
Based on Biot–Savart law and single-phase flow Kármán vortex characteristics, flow field has been analyzed when gas–liquid flow past a fixed bluff body with high void fraction. Vortex signal characteristics have been studied for stratified two-phase flow on atmospheric conditions in a horizontal pipe. To discuss the relation between void fraction and vortex signal amplitude spectrum, this paper sets up the vortex-induced pressure field model for gas–liquid two-phase flow and gives the relationship between void fraction and relative amplitude spectrum of two-phase flow to single-phase flow. An algorithm is proposed for predicting the two-phase flow parameters. Experiments were performed using air–water as working fluid along with a test tube diameter of 50 mm, at gas volume flow rate of 20–68 m3/h, and void fraction of 0.9–1. The results indicate that calculations by the vortex-induced pressure field model on the amplitude spectrum of vortex signal are in good agreement with the experimental data, and relative errors of the algorithm predictions on gas volume flow rate and liquid volume flow rate are 0.08 and 0.56, respectively.  相似文献   

12.
《Wear》2006,260(1-2):1-9
In the present work, we report the processing and properties of WC–6 wt.% ZrO2 composites, densified using the pressureless sintering route. The densification of the WC–ZrO2 composites was carried out in the temperature range of 1500–1700 °C with varying time (1–3 h) in vacuum. The experimental results indicate that significantly high hardness of 22–23 GPa and moderate fracture toughness of ∼5 MPa m1/2 can be obtained with 2 mol% Y-stabilized ZrO2 sinter-additive, sintered at 1600 °C for 3 h. Furthermore, the friction and wear behavior of optimized WC–ZrO2 composite is investigated on a fretting mode I wear tester. The tribological results reveal that a moderate coefficient of friction in the range from 0.15 to 0.5 can be achieved with the optimised composite. An important observation is that a transition in friction and wear with load is noted. The dominant mechanisms of material removal appear to be tribochemical wear and spalling of tribolayer.  相似文献   

13.
A portable device for calibration of trace humidity sensors and an adopted calibration procedure have been developed. The calibration device is based on humidity generation by permeating water through polymeric membrane tubes. Water vapour transmission rates for various polymers were experimentally determined in order to select the most suitable polymeric material. The developed trace humidity generator consists of a gas-flow polymeric hose immersed in a water reservoir thermostated by a sensor-controlled heater. Mole fractions of water vapour between 1 μmol mol−1 and 350 μmol mol−1 (equivalent to frost-point temperatures from −76 °C to −31 °C) were generated by varying either the operating temperature or gas flow. The operating temperature can be varied from 20 °C to 60 °C and kept stable within 0.1 K. Uncertainty analysis indicated that the trace humidity generator produces gas flows of constant humidity amounts with a relative expanded uncertainty less than 3.4% (k = 2) of the generated value.  相似文献   

14.
Y.S. Mao  L. Wang  K.M. Chen  S.Q. Wang  X.H. Cui 《Wear》2013,297(1-2):1032-1039
Dry sliding wear tests were performed for Ti–6Al–4V alloy under a load of 50–250 N at 25–500 °C on a pin-on-disk elevated temperature tester. Worn surfaces and subsurfaces were thoroughly investigated for the morphology, composition and structure of tribo-layers. Ti–6Al–4V alloy could not be considered to possess poor wear resistance at all times, and presented a substantially higher wear resistance at 400–500 °C than at 25–200 °C. The tribo-layer, a mechanical mixing layer, was noticed to exist on worn surfaces under various conditions. High wear rate at 25–200 °C was ascribed to no protective tribo-layer containing no or trace tribo-oxides. As more oxides appeared in the tribo-layers, they presented an obviously protective role due to their high hardness, thus giving a reasonable explanation for high wear resistance of Ti–6Al–4V alloy at 400–500 °C.  相似文献   

15.
The temperature dependence of the solid particle erosion of polydimethylsiloxane (PDMS) using aluminum oxide particles was investigated between the temperatures of ?178 and 17 °C for a variety of angles of attack using a novel cryogenic abrasive jet machining apparatus. It was found that the most efficient machining of PDMS (volume removed per kinetic energy of erodent) occurred at approximately ?178 °C, at angles of attack between 30° and 60° from the surface. A previously developed surface evolution model was used to predict the size and shape of unmasked channels at various temperatures. A good agreement between the predicted and measured channel profiles was obtained when the average blasting temperature was between approximately ?127 and ?178 °C. At ?82 °C, the fit was poorer, probably because of an increase in particle embedding. Although it was demonstrated that PDMS could be machined at temperatures above its glass transition, the erosion rate increased by a factor of more than 10 when the machining temperature was below this point.  相似文献   

16.
We propose a non-contact temperature measurement method that combines the temperature dependence of transmittance below 600 °C and radiation thermometry above 600 °C. The combined method uses a polarization technique and the Brewster angle between air and a dielectric film such as SiO2 or Si3N4 grown on silicon wafers. A prominent feature of this method is that both measurements of transmittance and radiance are performed with the same geometrical arrangement.For a semitransparent wafer, the measurement of p-polarized transmittance at the wavelengths of 1.1, 1.2 and 1.3 μm enables temperature measurement in the range from room temperature to 600 °C. For an opaque wafer above 600 °C, the p-polarized radiation thermometry at the wavelength of 4.5 μm allows the temperature measurement without the emissivity problem. The combined method with the use of transmittance and radiance is valid in the entire temperature range irrespective of variations of film thickness and resistivity.  相似文献   

17.
In this paper, on an experimental facility, the measurement characteristics of a diameter 50 mm dual triangulate bluff body vortex flowmeter in steady flow and oscillatory flow were investigated. Then, the Hilbert Huang Transformation (HHT) method was used to assess the anti-interference performances and the vortex street stability in oscillatory flow for the dual triangulate bluff body vortex flowmeter and a single bluff body vortex flowmeter. Offline simulation was carried out on the anti-interference performances of the dual triangulate bluff body vortex flowmeter signal noise in oscillatory flow by the method of the EMD-scales filter. The major findings are: (a) in most case, the EMD-scales filter may be as good at de-noising effect for the dual bluff body vortex flowmeter in oscillatory flow than that for the single bluff body vortex flowmeter in oscillatory flow. The vortex street stability in oscillatory flow for the dual bluff body is similar to that for the single bluff body. (b) In some special case, the EMD-scales filter is unable to play a better de-nosing role for the dual bluff body vortex flowmeter in oscillatory flow. The invalid condition of the EMD-scales filter for the dual bluff body vortex flowmeter in oscillatory flow is different to that of the single bluff body vortex flowmeter and it was advanced in this paper. (C) The vortex street stability for the dual bluff body vortex flowmeter is better than that for the single bluff body vortex flowmeter.  相似文献   

18.
This paper presents a new design method to synthesize multiple degrees-of-freedom (DOF) spatial-motion compliant parallel mechanisms (CPMs). Termed as the beam-based structural optimization approach, a novel curved-and-twisted (C-T) beam configuration is used as the basic design module to optimize the design parameters of the CPMs so as to achieve the targeted stiffness and dynamic characteristics. To derive well-defined fitness (objective) functions for the optimization algorithm, a new analytical approach is introduced to normalize the differences in the units, e.g., N/m or N m/rad, etc., for every component within the stiffness matrix. To evaluate the effectiveness of this design method, it was used to synthesize a 3-DOF spatial-motion (θx  θy  Z) CPM that delivers an optimized stiffness characteristics with a desired natural frequency of 100 Hz. A working prototype was developed and the experimental investigations show that the synthesized 3-DOF CPM can achieved a large workspace of 8°×8°×5.5 mm, high stiffness ratios, i.e., >200 for non-actuating over actuating stiffness, and a measured natural frequency of 84.4 Hz.  相似文献   

19.
The tribological properties of Ni-17.5Si-29.3Cr alloy against Si3N4 were studied on a ball-on-disc tribotester between room temperature and 1000 °C. The effects of temperature on the tribological properties of the alloy were investigated. The worn surfaces of the alloy were examined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicated that the tribological behavior of the alloy expressed some differences with increase in testing temperature. At low and moderate temperatures (below 800 °C), the alloy showed excellent wear and oxidation resistances, and the wear rate of the alloy remained in the magnitude of 10?5 mm3/Nm; but at elevated temperature (800–1000 °C), the wear and oxidation resistances decreased, and the wear rate of the alloy increased up to 10?4 mm3/Nm. The friction coefficient decreased from 0.58 to 0.46 with the rising of testing temperature from 20 to 600 °C, and then remained nearly constant. The wear mechanism of the alloy was mainly fracture and delamination at low and moderate temperatures, and transformed to adhesive and oxidation at elevated temperatures.  相似文献   

20.
Dry sliding tests were performed for 45, 4Cr5MoSiV1 steels and 3Cr3Mo2V cast steel at 200 and 400 °C. The wears at 200 and 400 °C are of oxidative wear characteristic due to tribo-oxides formed on worn surfaces. However, the wear at 200 °C presents different wear behaviors and characteristics from the one at 400 °C. The wear at 200 °C is a typical oxidative mild wear, but the wear at 400 °C is beyond oxidative mild wear, here called oxidative wear. The characteristics of oxidative mild wear and oxidative wear were clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号