首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinel, MgAl2O4, has been observed to form on sapphire during sapphire dissolution into CaO-MgO-Al2O3-SiO2 (CMAS) melts at 1450°. and 1550°C. Electron microprobe analysis was used to characterize the sapphire/melt interface for cases in which spinel did (indirect dissolution) or did not (direct dissolution) form on the sapphire during dissolution into CMAS melts. The concentrations of Al2O3, MgO, CaO, and SiO2 were determined as a function of position within the spinel reaction product and in the adjacent melt. The rate-limiting steps for direct and indirect sapphire dissolution into CMAS melts are discussed.  相似文献   

2.
The dissolution rate of sapphire into CaO-MgO-Al2O3-SiO2 (CMAS) melts was investigated at 1450° and 1550°C. The effects of immersion time, specimen rotation rate, and magnesia concentration in the bulk melt on the sapphire dissolution rate and on the growth rate of magnesium aluminate spinel at the sapphire/melt interface were determined. The processes of direct and indirect sapphire dissolution into CMAS melts are discussed, with the support of kinetic and microprobe data.1 A model of indirect sapphire dissolution1,2 is used along with the equations of Tedmon3 to describe the kinetics of indirect dissolution and spinel layer growth during forced-convective and static sapphire dissolution.  相似文献   

3.
Hot-corrosion behavior of Ba1/3Sr1/3Ca1/3Al2Si2O8 (BSCAS) in the presence of molten calcium-magnesium-aluminum-silicate (CMAS) is investigated in the temperature range of 1250–1350 °C. In comparison, the hot corrosion behavior of Ba0.5Sr0.5Al2Si2O8 (BSAS) is also studied under the same conditions. The results indicate that CMAS corrosion of both BSCAS and BSAS is caused by the interdiffusion of Ba/Sr and Ca between CMAS and corroded samples. The presence of Ca cations in BSCAS lowers the diffusion driving force of Ca cations between CMAS and BSCAS, resulting in a reduced diffusion rate of Ca cations from CMAS into BSCAS. Moreover, the sluggish diffusion effect of multi-component cations hinders the outward diffusion of Ba/Sr cations from BSCAS. Thus, the BSCAS shows a better CMAS corrosion resistance than BSAS.  相似文献   

4.
The dissolution of (Al, Cr)2O3 into CaO—MgO—Al2O3—SiO2 melts, under static and forced-convective conditions was investigated at 1550°C in air. With sufficient MgO in the melt, or sufficient Cr2O3 in (Al, Cr)2O3, a layer consisting of a spinel solid solution, Mg(Al, Cr)2O4, formed at the (Al, Cr)2O3/melt interface. The dissolution kinetics of 1.5 and 10 wt% Cr2O3 specimens were determined as a function of immersion time, specimen rotation rate, and magnesia content of the melt. Electron microprobe analysis was used to characterize concentration gradients in the (Al, Cr)2O3 sample, the Mg(Al, Cr)2O4 spinel, or in the melt after immersion of specimens containing 1.5 to 78 mol% Cr2O3. The dissolution kinetics and microprobe analyses indicated that a steady-state condition was reached during forced-convective, indirect (Al, Cr)2O3 dissolution such that spinel layer formation was rate limited by solid-state diffusion through the spinel layer and/or through the specimen, and spinel layer dissolution was rate limited by liquid-phase diffusion through a boundary layer in the melt. This is consistent with a model previously developed for the indirect dissolution of sapphire in CMAS melts.  相似文献   

5.
Glassy deposits, largely consisting of CaO-MgO-Al2O3-SiO2 (CMAS), are a common product on thermal barrier coatings (TBCs) within gas-turbines after an interaction with airborne particles. Here, in order to facilitate the quantification and modelling of the spreading and infiltration behavior of CMAS melts onto and into TBCs we have determined the high temperature viscosities of four widely used synthetic “CMAS” melts and the influence of TBC materials (yttria-stabilized zirconia (YSZ) and gadolinium zirconate (GZO)) dissolution upon them. After a dissolution of 6.5 wt% YSZ or GZO one out of four CMAS melts shows no significant change in viscosity, while the other three melts exhibit a viscosity increase at lower temperatures that continuously changes to a decrease in viscosity towards higher temperatures. The influence of the doping amount on the viscosity was investigated in detail for one CMAS melt (C35M10A7S48) and parametrized.  相似文献   

6.
The degradation of thermal barrier coatings (TBCs) by molten silicates (CMAS) represents a fundamental barrier to progress in gas turbine technology, requiring a mechanistic understanding of the problem to guide the development of improved coatings. This article investigates the dissolution of yttria-stabilized zirconia (7YSZ and 20YSZ) into two model silicate melts at 1300–1400 °C. The approach involves the 1D dissolution of YSZ into a semi-infinite melt, characterizing the dissolution rates of YSZ and the diffusion rates of Zr4+ and Y3+ therein. The assessed kinetics of YSZ dissolution and diffusion were then applied to modeling the same phenomena on TBC-relevant length scales. These findings provide fundamental insight into (i) the dissolution mechanism of YSZ, (ii) the subsequent reprecipitation upon saturation, (iii) the quantitative effects of temperature and melt composition on the dissolution and diffusion kinetics, and (iv) how the measured kinetics manifests on the scale of flow channels present in TBCs.  相似文献   

7.
Demand for more powerful aircraft promotes development of ceramic matrix composites and environmental barrier coating (EBC). A promising EBC material, ytterbium oxide (Yb2O3), was fabricated by hot pressing, and its properties were systemically investigated. The evaluation of thermal properties provides a baseline for the application of Yb2O3 on SiCf/SiC or Al2O3f/Al2O3 composites. The performance in water vapor and molten calcium–magnesium–aluminosilicate (CMAS) environments indicates its excellent durability in harsh environment. Compared with rare-earth silicates, the thermochemical interactions between ytterbium oxide and CMAS changed greatly with the absence of silicon oxide. Reactions of ytterbium oxide with CMAS form several reaction products, including apatite, garnet, and silicocarnotite. The crystallization of garnet and silicocarnotite could effectively consume and solidify the CMAS melt, which prevents the melt infiltration and mitigates the further corrosion.  相似文献   

8.
Thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition (EB-PVD) or plasma spray (PS) usually suffer from molten calcium-magnesium-alumino-silicate (CMAS) attack. In this study, columnar structured YSZ coatings were fabricated by plasma spray physical vapor deposition (PS-PVD). The coatings were CMAS-infiltrated at 1250?°C for short terms (1, 5, 30?min). The wetting and spreading dynamics of CMAS melt on the coating surface was in-situ investigated using a heating microscope. The results indicate that the spreading evolution of CMAS melt can be described in terms of two stages with varied time intervals and spreading velocities. Besides, the PS-PVD columnar coating (~100?μm thick) was fully penetrated by CMAS melt within 1?min. After the CMAS attack for 30?min, the original feathered-YSZ grains (tetragonal phase) in both PS-PVD and EB-PVD coatings were replaced by globular shaped monoclinic ZrO2 grains in the interaction regions.  相似文献   

9.
At high temperatures in gas turbines, traditional yttria stabilized zirconia materials fail prematurely owing to CMAS (calcium–magnesium–alumina–silicate) corrosion. Thus, new materials need to be developed urgently. In this study, LaPO4 powder was synthesized by chemical coprecipitation and heat treatment using lanthanum nitrate (La(NO3)3∙6H2O) and ammonium dihydrogen phosphate (NH4H2PO4) as starting materials, and LaPO4 bulk was prepared by spark plasma sintering. The surface of the LaPO4 bulk was coated with CMAS (CaO–MgO–Al2O3–SiO2) powder, and the CMAS interaction with the LaPO4 bulk at different temperatures was investigated. The phase and microstructure of the LaPO4 powder and bulk, as well as the CMAS corrosion products, were characterized using X-ray diffraction and scanning electron microscope. The superior CMAS resistance of the LaPO4 bulk was attributed to the low wettability of LaPO4 by the CMAS melt and the development of dense layers of new corrosion products, which effectively protected the LaPO4 bulk from CMAS infiltration.  相似文献   

10.
《Ceramics International》2022,48(21):31790-31799
Sr(Zr1-2xCexGdx)O3-0.5x (x = 0, 0.05, 0.1 and 0.15) ceramics were prepared by pressureless sintering using powders that were synthesized by solid-state reaction. The mechanical properties and calcium–magnesium–alumino–silicate (CMAS) early corrosion behaviour of the prepared ceramics were reported. The mechanical properties of rare-earth-doped SrZrO3 improved significantly. The reaction products of the Sr(Zr1-2xCexGdx)O3-0.5x ceramics after CMAS corrosion were similar: zirconia, SrAl2O4, akermanite, and anorthite. The mechanism of CMAS corrosion resistance is summarized as follows: elemental Sr easily enters the CMAS melt, because of its high diffusivity, and promotes crystallization. Rare-earth elements can prevent melt infiltration because of their low diffusivity.  相似文献   

11.
Ingestion of siliceous particulate debris into both propulsion and energy turbines has introduced significant challenges in harnessing the benefits of enhanced operation efficiencies through the use of higher temperatures and thermal barrier coatings (TBCs). The so-called CMAS (for calcium-magnesium alumino-silicate) particles can melt in the gas path at temperatures greater than 1200C, where they will subsequently impact the coating surface and infiltrate through the carefully engineered porosity or cracks in a TBC. Ultimately, this CMAS attack causes premature spallation through its solidification and stiffening the ceramic during cooling. It has been noted in recent years, that TBCs based on yttria stabilized zirconia (YSZ) are completely non-resistant to CMAS attack due to their lack of reactivity with infiltrant liquid. New TBC ceramics such as Gadolinium Zirconate (GZO) show promise of CMAS resistance through rapid reaction-induced crystallization and solidification of the infiltrant, leading to its arrested infiltration. In both situations, the microstructure (porosity, micro and macro cracks) can be important differentiators in terms of the infiltration and subsequent failure mechanisms. This paper seeks to examine the interplay among microstructure, material, and CMAS attack in different scenarios. To do so, different types of YSZ & GZO single and multilayer coatings were fabricated using Air Plasma Spray (APS) and exposed to CMAS through isothermal and gradient mechanisms. In each of the cases, beyond their unique interactions with CMAS, it was observed the inherent microstructure and character of the porosity of the coating will have an additional role on the movement of the melt. For instance, vertical cracks can provide pathways for accelerated capillaric flow of the melt into both YSZ and GZO coatings. Based on these observations multilayer coatings have been proposed and realized toward potentially reducing complete coating failure and supporting multiple CMAS attack scenarios.  相似文献   

12.
《Ceramics International》2017,43(12):9019-9023
Rare earth (RE) silicates have been applied as advanced environmental barrier coatings (EBCs) to protect silicon carbide fibers reinforced silicon carbide ceramic matrix from water vapor and molten salt corrosion in engines. This process, however, is limited by volcanic ash corrosion as assessment of ash-induced corrosion is anecdotal and quantitative data are insufficient. In this account, the corrosion behavior of RE monosilicates (RE2SiO5, RE = Y, Lu, Yb, Eu, Gd, and La) by calcium–magnesium–aluminosilicate (CMAS), with similar composition as volcanic ash, was comprehensively investigated. Results indicated that RE2SiO5 could react with CMAS at 1200 °C at the interface, where the products crystallized in CMAS glass. RE2Si2O7 was formed by the reaction between RE2SiO5 and silica (SiO2) in CMAS, which was followed by corrosion of RE2Si2O7 by CMAS. RE2SiO5 with Type B structure showed better resistance toward CMAS than RE2SiO5 with Type A structure. Moreover, RE2SiO5 with larger radii of RE3+ cations led to easy formation of oxyapatite phase; however, RE2SiO5 with smaller radii of RE3+ cations easily formed garnet phase. Besides, smaller radii RE3+ cations induced slower reactions. These findings can contribute to identifying, preventing, and minimizing the damage to matrix components with EBCs caused by volcanic ash.  相似文献   

13.
Al2O3 was deposited as a top coat on a standard 7YSZ layer (or layers) by means of EB-PVD technique and the corresponding morphology of the Al2O3/7YSZ coatings was studied in detail. This multi-layer TBC system was tested against calcium-magnesium-aluminium-silicate (CMAS) recession by performing infiltration experiments for different time intervals from 5?min to 50?h at 1250?°C using two types of synthetic CMAS compositions and Eyjafjallajökull volcanic ash (VA) from Iceland. The results show that the studied EB-PVD Al2O3/7YSZ coatings react quickly with CMAS or VA melt and form crystalline spinel (MgAl2-xFexO4) and anorthite (CaAl2Si2O4) phases. The presence of Fe-oxide in the CMAS has been found to be key element in influencing the spinel formation which was proved to be more efficient against CMAS sealing in comparison to the Fe-free CMAS compositions. Even though a rapid crystallization was assured, shrinkage cracks in the EB-PVD alumina layer produced during the crystallization heat treatment have proven to be detrimental for the CMAS/VA infiltration resistance. To overcome these microstructural drawbacks, an additional alumina deposition method, namely reaction-bonded alumina oxide (RBAO), was applied on top of EB-PVD Al2O3. RBAO acts as a sacrificial layer forming stable reaction products inhibiting further infiltration.  相似文献   

14.
Based on the application of OB considerations (Part I) to various major thermal barrier coating (TBC) compositions and two types of important calcium–magnesium–alumino–silicates (CMAS)—desert sand and fly ash—the 2ZrO2·Y2O3 solid solution (ss) TBC composition, with high CMAS‐resistance potential, is chosen for studying molten‐CMAS/TBC interactions. It is demonstrated that 2ZrO2·Y2O3(ss) air plasma sprayed (APS) TBCs are highly resistant to high‐temperature attack by both sand‐CMAS and fly‐ash‐CMAS. Despite the differences in the compositions of the two CMASs, the overall CMAS‐attack mitigation mechanisms in both cases appear to be similar, viz reaction between 2ZrO2·Y2O3(ss) APS TBC and the CMAS, and the formation of main reaction products of Y‐depleted c‐ZrO2 and nonstoichiometric Ca–Y apatite. Large differences in the OBs (ΔΛ) between the 2ZrO2·Y2O3(ss) and the CMASs are good predictors of ready reaction between this TBC and these CMASs. While the details of the CMAS‐mitigation mechanisms can depend critically on various other aspects, the OB difference (ΔΛ) calculations could be used for the initial screening of CMAS‐resistant TBC compositions.  相似文献   

15.
A calcium-magnesium aluminosilicate (CMAS) glass was prepared by melting a sample of desert sand to evaluate the high-temperature interactions between molten CMAS and yttrium disilicate (Y2Si2O7), an environmental barrier coating (EBC) candidate material. Cold-pressed pellets of 80?wt% Y2Si2O7 powder and 20?wt% CMAS glass powder were heat treated at 1200?°C, 1300?°C, 1400?°C and 1500?°C for 20?h in air. The resulting phases were evaluated using powder X-ray diffraction. In the second set of experiments, free standing hot-pressed Y2Si2O7 substrates with cylindrical wells were filled with CMAS powder to a loading of ~35?mg/cm2 and heat treated in air at 1200?°C, 1300?°C, 1400?°C and 1500?°C for 20?h. Scanning electron microscopy, energy-dispersive spectroscopy and electron microprobe analysis were used to evaluate the microstructure and phase compositions of specimens after heat treatment. An oxyapatite silicate (Ca2Y8(SiO4)6O2) phase was identified in all specimens after CMAS exposure regardless of heat treatment temperature. Apatite appeared to form by dissolution of Y2Si2O7 into molten CMAS, reacting with CaO in the melt according to the reaction 4Y2Si2O7 +?2CaO → Ca2Y8(SiO4)6O2 +?2SiO2, and followed by precipitation of the apatite phase.  相似文献   

16.
Erbium doped and pure ytterbium aluminium garnet (YbAG, Yb3Al5O12) bulk ceramics were successfully prepared by a chelating sol–gel route based on the polyesterification of ethylenediaminetetraacetic acid (EDTA) with triethanolamine (TEA). The gel decomposition and phase formation in precursor powders were studied using XRD and TG/DTA. Amorphous precursor was directly converted to YbAG phase after calcinations at 800 °C. The influence of intermediate grinding on microstructure and luminescent properties was investigated. The discrete luminescence bands of the 4I13/2  4I15/2 transition were observed in the infrared emission spectra of erbium doped samples. The lifetime of luminescence at 1530 nm was 2.82 ms and 1.82 ms for the doped samples. This may be attributed to the different efficiency of surface recombination channel, caused by different grain size distribution. Prepared samples are suitable as a standard for photoluminescence measuring of Er-doped YbAG thin films.  相似文献   

17.
《Ceramics International》2019,45(16):19710-19719
Because gas turbine engines must operate under increasingly harsh conditions, the degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) is becoming an urgent issue. Mullite (3Al2O3·2SiO2) is considered a potential material for CMAS resistance; however, the performance of mullite in the presence of CMAS is still unclear. In this study, mullite and Al2O3–SiO2 were premixed with yttria stabilized zirconia (YSZ) in different proportions, respectively. Porous ceramic pellets were used to conduct CMAS hot corrosion tests, and the penetration of molten CMAS and its mechanism were investigated. The thermal and mechanical properties of the samples were also characterized. It was found that the introduction of mullite and Al2O3–SiO2 mitigated the penetration of molten CMAS into the pellets owing to the formation of anorthite, especially at 45 wt% mullite/55 wt% YSZ. Compared with Al2O3–SiO2, mullite possesses a higher chemical activity and undergoes a faster reaction with CMAS, thus forming a sealing layer in a short time. Additionally, the thermal expansion coefficient, thermal conductivity, and fracture toughness of different samples were considered to guide the architectural design. Considering the CMAS corrosion resistance, thermal and mechanical performance of TBCs systematically, a TBC system with a multilayer architecture is proposed to provide a theoretical and practical basis for the design and optimization of the TBC microstructure.  相似文献   

18.
Calcium-magnesium-alumino-silicates (CMAS) melt attack has been a critical issue for the thermal barrier coatings (TBCs) with ever-increasing engine operating temperature. In this study, a novel CMAS-resistant material apatite-type Gd10(SiO4)6O3 is developed for TBCs application based on thermodynamic equilibrium design. The chemical reaction of Gd10(SiO4)6O3 bulk and CMAS melt is investigated at 1300°C. The CMAS corrosion resistance of Gd10(SiO4)6O3 bulk is evaluated and compared with the well-studied CMAS-resistant material Gd2Zr2O7 (GZO). It is found that Gd10(SiO4)6O3 shows a significantly enhanced CMAS resistance, including lower intrinsic CMAS infiltration rate (~1.09 μm/h1/2) and smaller infiltration upper limit (50-62 μm) for a 20 mg/cm2 CMAS deposition. More importantly, for Gd10(SiO4)6O3, the CMAS infiltration only alters the composition but does not change the crystal structure or destroy microstructural integrity. The reaction mechanism is elucidated as following two stages: (a) surface Gd10(SiO4)6O3 quickly transforms into Ca2Gd8(SiO4)6O2 in suit by interdiffusion with CMAS melt and then is thermodynamically stable with CMAS melt, thereby effectively inhibiting the further CMAS infiltration and (b) with the ongoing interdiffusion of Gd/Ca, the CMAS-infiltrated layer slowly thickens and follows a parabolic law. Meanwhile, the CMAS melt gradually precipitates Ca2Gd8(SiO4)6O2 and CaAl2Si2O8 (anorthite) until the melt is exhausted.  相似文献   

19.
Thermal barrier coatings (TBCs) are increasingly susceptible to degradation by molten calcium–magnesium alumino silicate (CMAS) deposits in advanced engines that operate at higher temperatures and in environments laden with siliceous debris. This paper investigates the thermochemical aspects of the degradation phenomena using a model CMAS composition and ZrO2–7.6%YO1.5 (7YSZ) grown by vapor deposition on alumina substrates. The changes in microstructure and chemistry are characterized after isothermal treatments of 4 h at 1200°–1400°C. It is found that CMAS rapidly penetrates the open structure of the coating as soon as melting occurs, whereupon the original 7YSZ dissolves in the CMAS and reprecipitates with a different morphology and composition that depends on the local melt chemistry. The attack is minimal in the bulk of the coating but severe near the surface and the interface with the substrate, which is also partially dissolved by the melt. The phase evolution is discussed in terms of available thermodynamic information.  相似文献   

20.
The melting and crystallization behaviors of model calcium–magnesium–alumino‐silicate (CMAS) compositions relevant to the degradation of thermal barrier coatings (TBCs) were investigated. A primary goal was to establish a baseline for studies on CMAS reactions with TBC materials, reported separately, and their potential to mitigate degradation. Ternary calcium alumino‐silicate (CAS) compositions investigated melt below their equilibrium solidus owing to their metastable phase constitution. Additions of MgO or FeOx have significant effects on the melting behavior, depending on the C:A:S proportions. Amorphization on cooling is commonplace, with MgO, AlO1.5, and especially FeOx promoting crystallization. The behaviors of amorphous and crystalline versions of the same CMAS are different and depend on heating/cooling rates, with attendant implications for their interaction with TBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号