共查询到20条相似文献,搜索用时 15 毫秒
1.
Miriam Buttacavoli Gianluca Di Cara Elena Roz Ida Pucci-Minafra Salvatore Feo Patrizia Cancemi 《International journal of molecular sciences》2021,22(22)
Colorectal cancer (CRC) develops by genetic and epigenetic alterations. However, the molecular mechanisms underlying metastatic dissemination remain unclear and could benefit from multi-omics investigations of specific protein families. Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in ECM remodeling and the processing of bioactive molecules. Increased MMP expression promotes the hallmarks of tumor progression, including angiogenesis, invasion, and metastasis, and is correlated with a shortened survival. Nevertheless, the collective role and the possible coordination of MMP members in CRC are poorly investigated. Here, we performed a multi-omics analysis of MMP expression in CRC using data mining and experimental investigations. Several databases were used to deeply mine different expressions between tumor and normal tissues, the genetic and epigenetic alterations, the prognostic value as well as the interrelationships with tumor immune-infiltrating cells (TIICs). A special focus was placed on to MMP2 and MMP9: their expression was correlated with immune markers and the interaction network of co-expressed genes disclosed their implication in epithelial to mesenchymal transition (EMT) and immune response. Finally, the activity levels of MMP2 and MMP9 in a cohort of colon cancer samples, including tissues and the corresponding sera, was also investigated by zymography. Our findings suggested that MMPs could have a high potency, as they are targeted in colon cancer, and might serve as novel biomarkers, especially for their involvement in the immune response. However, further studies are needed to explore the detailed biological functions and molecular mechanisms of MMPs in CRC, also in consideration of their expression and different regulation in several tissues. 相似文献
2.
Rolf Schreckenberg Annemarie Wolf Tamara Szabados Kamilla Gmri Istvn Adorjn Szab Gergely goston Gbor Brenner Pter Bencsik Pter Ferdinandy Rainer Schulz Klaus-Dieter Schlüter 《International journal of molecular sciences》2022,23(12)
Hypoxia upregulates PCSK9 expression in the heart, and PCSK9 affects the function of myocytes. This study aimed to investigate the impact of PCSK9 on reperfusion injury in rats and mice fed normal or high-fat diets. Either the genetic knockout of PCSK9 (mice) or the antagonism of circulating PCSK9 via Pep2-8 (mice and rats) was used. Isolated perfused hearts were exposed to 45 min of ischemia followed by 120 min of reperfusion. In vivo, mice were fed normal or high-fat diets (2% cholesterol) for eight weeks prior to coronary artery occlusion (45 min of ischemia) and reperfusion (120 min). Ischemia/reperfusion upregulates PCSK9 expression (rats and mice) and releases it into the perfusate. The inhibition of extracellular PCSK9 does not affect infarct sizes or functional recovery. However, genetic deletion largely reduces infarct size and improves post-ischemic recovery in mice ex vivo but not in vivo. A high-fat diet reduced the survival rate during ischemia and reperfusion, but in a PCSK9-independent manner that was associated with increased plasma matrix metalloproteinase (MMP)9 activity. PCSK9 deletion, but not the inhibition of extracellular PCSK9, reduces infarct sizes in ex vivo hearts, but this effect is overridden in vivo by factors such as MMP9. 相似文献
3.
受阻胺类光稳定剂Tinuvin-770的合成 总被引:2,自引:0,他引:2
综述了受阻胺类光稳定剂Tinuvin-770的合成方法、工艺条件及发展、生产状况。详细地阐述了催化剂、溶剂、癸二酸二酯种类、温度、压力等因素对产品收率的影响。得出在NaOCH3为催化剂、正庚烷为溶剂、常压(后期一般负压反应)及回流温度下,选用癸二酸二甲酯与2,2,6,6-四甲基-4-哌啶醇进行酯交换反应4~5h,得目的产物,其收率在97%以上。 相似文献
4.
Ricardo Lamy Marie Wolf Claudia Bispo Selene M. Clay Siyu Zheng Finn Wolfreys Peipei Pan Matilda F. Chan 《International journal of molecular sciences》2022,23(5)
Mononuclear phagocytes (MP) have central importance in innate immunity, inflammation, and fibrosis. Recruited MPs, such as macrophages, are plastic cells and can switch from an inflammatory to a restorative phenotype during the healing process. However, the role of the MPs in corneal wound healing is not completely understood. The purpose of this study is to characterize the kinetics of recruited MPs and evaluate the role of macrophage metalloelastase (MMP12) in the healing process, using an in vivo corneal chemical injury model. Unwounded and wounded corneas of wild-type (WT) and Mmp12−/− mice were collected at 1, 3, and 6 days after chemical injury and processed for flow cytometry analysis. Corneal MP phenotype significantly changed over time with recruited Ly6Chigh (proinflammatory) cells being most abundant at 1 day post-injury. Ly6Cint cells were highly expressed at 3 days post-injury and Ly6Cneg (patrolling) cells became the predominant cell type at 6 days post-injury. CD11c+ dendritic cells were abundant in corneas from Mmp12−/− mice at 6 days post-injury. These findings show the temporal phenotypic plasticity of recruited MPs and provide valuable insight into the role of the MPs in the corneal repair response, which may help guide the future development of MP-targeted therapies. 相似文献
5.
利用3G网络技术实现换热站本地控制器与监控中心之间的信号传输,研制了一种新型换热站远程监控系统.该系统充分利用3G网络的技术优势,成功克服了以往无线电传机、GPRS等在传输带宽、速率上的不足;为了满足监测音视频信号的编码和解码需求,本系统采用ARM+专用多媒体DSP的双核架构实现换热站本地控制器,充分利用ARM和DSP... 相似文献
6.
Sachiko Murase Sarah E. Robertson Crystal L. Lantz Ji Liu Daniel E. Winkowski Elizabeth M. Quinlan 《International journal of molecular sciences》2022,23(5)
The deletion of matrix metalloproteinase MMP9 is combined here with chronic monocular deprivation (cMD) to identify the contributions of this proteinase to plasticity in the visual system. Calcium imaging of supragranular neurons of the binocular region of primary visual cortex (V1b) of wild-type mice revealed that cMD initiated at eye opening significantly decreased the strength of deprived-eye visual responses to all stimulus contrasts and spatial frequencies. cMD did not change the selectivity of V1b neurons for the spatial frequency, but orientation selectivity was higher in low spatial frequency-tuned neurons, and orientation and direction selectivity were lower in high spatial frequency-tuned neurons. Constitutive deletion of MMP9 did not impact the stimulus selectivity of V1b neurons, including ocular preference and tuning for spatial frequency, orientation, and direction. However, MMP9−/− mice were completely insensitive to plasticity engaged by cMD, such that the strength of the visual responses evoked by deprived-eye stimulation was maintained across all stimulus contrasts, orientations, directions, and spatial frequencies. Other forms of experience-dependent plasticity, including stimulus selective response potentiation, were normal in MMP9−/− mice. Thus, MMP9 activity is dispensable for many forms of activity-dependent plasticity in the mouse visual system, but is obligatory for the plasticity engaged by cMD. 相似文献
7.
8.
Kanut Laoharawee Matthew J. Johnson Walker S. Lahr Christopher J. Sipe Evan Kleinboehl Joseph J. Peterson Cara-lin Lonetree Jason B. Bell Nicholas J. Slipek Andrew T. Crane Beau R. Webber Branden S. Moriarity 《International journal of molecular sciences》2022,23(17)
Monocytes and their downstream effectors are critical components of the innate immune system. Monocytes are equipped with chemokine receptors, allowing them to migrate to various tissues, where they can differentiate into macrophage and dendritic cell subsets and participate in tissue homeostasis, infection, autoimmune disease, and cancer. Enabling genome engineering in monocytes and their effector cells will facilitate a myriad of applications for basic and translational research. Here, we demonstrate that CRISPR-Cas9 RNPs can be used for efficient gene knockout in primary human monocytes. In addition, we demonstrate that intracellular RNases are likely responsible for poor and heterogenous mRNA expression as incorporation of pan-RNase inhibitor allows efficient genome engineering following mRNA-based delivery of Cas9 and base editor enzymes. Moreover, we demonstrate that CRISPR-Cas9 combined with an rAAV vector DNA donor template mediates site-specific insertion and expression of a transgene in primary human monocytes. Finally, we demonstrate that SIRPa knock-out monocyte-derived macrophages have enhanced activity against cancer cells, highlighting the potential for application in cellular immunotherapies. 相似文献
9.
Rho kinase (ROCK) is a well-known downstream effector of Rho and plays an important role in various physiopathological processes. In this study, we aim to investigate the correlation between ROCK and microvascular damage in rat brain subjected to middle cerebral artery occlusion (MCAO) and reperfusion, and to elucidate the mechanisms underlying the microvascular damage. ROCK and matrix metalloproteinase 9 (MMP9) mRNA levels were determined by real time quantitative PCR, Laminin was detected by immunofluorescence and Blood Brain Barrier (BBB) permeability was examined by Evans Blue (EB) in rat MCAO models. We observed similar patterns of changes in ROCK expression, brain EB content, and Laminin expression at different time points after brain ischemia. Statistical analysis further confirmed a significant linear correlation of ROCK expression with the onset of microvascular damage in brain. Furthermore, the ROCK inhibitor fasudil decreased brain EB content but increased Laminin expression. These results provide strong evidence that ROCK mediates microvascular damage. In addition, we found that fasudil could significantly inhibit MMP9 expression induced by ischemia. Thus, our findings suggest that ROCK promotes microvascular damage by upregulating MMP9 and reveal ROCK as a promising therapeutic target for stroke. 相似文献
10.
Jana Goerg Manuela Sommerfeld Bettina Greiner Dilyara Lauer Yasemin Seckin Alexander Kulikov Dmitry Ivkin Ulrich Kintscher Sergey Okovityi Elena Kaschina 《International journal of molecular sciences》2021,22(11)
The effects of the selective sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin in low dose on cardiac function were investigated in normoglycemic rats. Cardiac parameters were measured by intracardiac catheterization 30 min after intravenous application of empagliflozin to healthy animals. Empagliflozin increased the ventricular systolic pressure, mean pressure, and the max dP/dt (p < 0.05). Similarly, treatment with empagliflozin (1 mg/kg, p.o.) for one week increased the cardiac output, stroke volume, and fractional shortening (p < 0.05). Myocardial infarction (MI) was induced by ligation of the left coronary artery. On day 7 post MI, empagliflozin (1 mg/kg, p.o.) improved the systolic heart function as shown by the global longitudinal strain (−21.0 ± 1.1% vs. −16.6 ± 0.7% in vehicle; p < 0.05). In peri-infarct tissues, empagliflozin decreased the protein expression of matrix metalloproteinase 9 (MMP9) and favorably regulated the cardiac transporters sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) and sodium hydrogen exchanger 1 (NHE1). In H9c2 cardiac cells, empagliflozin decreased the MMP2,9 activity and prevented apoptosis. Empagliflozin did not alter the arterial stiffness, blood pressure, markers of fibrosis, and necroptosis. Altogether, short-term treatment with low-dose empagliflozin increased the cardiac contractility in normoglycemic rats and improved the systolic heart function in the early phase after MI. These effects are attributed to a down-regulation of MMP9 and NHE1, and an up-regulation of SERCA2a. This study is of clinical importance because it suggests that a low-dose treatment option with empagliflozin may improve cardiovascular outcomes post-MI. Down-regulation of MMPs could be relevant to many remodeling processes including cancer disease. 相似文献
11.
Junko Inagaki Airi Nakano Omer Faruk Hatipoglu Yuka Ooka Yurina Tani Akane Miki Kentaro Ikemura Gabriel Opoku Ryosuke Ando Shintaro Kodama Takashi Ohtsuki Hirosuke Yamaji Shusei Yamamoto Eri Katsuyama Shogo Watanabe Satoshi Hirohata 《International journal of molecular sciences》2022,23(5)
Osteoarthritis is a progressive disease characterized by cartilage destruction in the joints. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play key roles in osteoarthritis progression. In this study, we screened a chemical compound library to identify new drug candidates that target MMP and ADAMTS using a cytokine-stimulated OUMS-27 chondrosarcoma cells. By screening PCR-based mRNA expression, we selected 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide as a potential candidate. We found that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated IL-1β-induced MMP13 mRNA expression in a dose-dependent manner, without causing serious cytotoxicity. Signaling pathway analysis revealed that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated ERK- and p-38-phosphorylation as well as JNK phosphorylation. We then examined the additive effect of 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide in combination with low-dose betamethasone on IL-1β-stimulated cells. Combined treatment with 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide and betamethasone significantly attenuated MMP13 and ADAMTS9 mRNA expression. In conclusion, we identified a potential compound of interest that may help attenuate matrix-degrading enzymes in the early osteoarthritis-affected joints. 相似文献
12.
13.
14.
15.
Joana Mota Rosa Direito Joo Rocha Joo Fernandes Bruno Sepodes Maria Eduardo Figueira Anabela Raymundo Ana Lima Ricardo Boavida Ferreira 《International journal of molecular sciences》2021,22(24)
Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are regarded as important clinical targets due to their nodal-point role in inflammatory and oncological diseases. Here, we aimed at isolating and characterizing am MMP-2 and-9 inhibitor (MMPI) from Lupinus albus and at assessing its efficacy in vitro and in vivo. The protein was isolated using chromatographic and 2-D electrophoretic procedures and sequenced by using MALDI-TOF TOF and MS/MS analysis. In vitro MMP-2 and 9 inhibitions were determined on colon adenocarcinoma (HT29) cells, as well as by measuring the expression levels of genes related to these enzymes. Inhibitory activities were also confirmed in vivo using a model of experimental TNBS-induced colitis in mice, with oral administrations of 15 mg·kg−1. After chromatographic and electrophoretic isolation, the L. albus MMP-9 inhibitor was found to comprise a large fragment from δ-conglutin and, to a lower extent, small fragments of β-conglutin. In vitro studies showed that the MMPI successfully inhibited MMP-9 activity in a dose-dependent manner in colon cancer cells, with an IC50 of 10 µg·mL−1 without impairing gene expression nor cell growth. In vivo studies showed that the MMPI maintained its bioactivities when administered orally and significantly reduced colitis symptoms, along with a very significant inhibition of MMP-2 and -9 activities. Overall, results reveal a novel type of MMPI in lupine that is edible, proteinaceous in nature and soluble in water, and effective in vivo, suggesting a high potential application as a nutraceutical or a functional food in pathologies related to abnormally high MMP-9 activity in the digestive system. 相似文献
16.
17.
Elodie Mareux Martine Lapalus Amel Ben Saad Renaud Zelli Mounia Lakli Yosra Riahi Marion Almes Manon Banet Isabelle Callebaut Jean-Luc Decout Thomas Falguires Emmanuel Jacquemin Emmanuel Gonzales 《International journal of molecular sciences》2022,23(18)
ABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin–Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter. 相似文献
18.
Bojie Xu Ruicheng Yang Jiyang Fu Bo Yang Jiaqi Chen Chen Tan Huanchun Chen Xiangru Wang 《International journal of molecular sciences》2021,22(12)
Brain microvascular endothelial cells (BMECs) constitute the structural and functional basis for the blood–brain barrier (BBB) and play essential roles in bacterial meningitis. Although the BBB integrity regulation has been under extensive investigation, there is little knowledge regarding the roles of long non-coding RNAs (lncRNAs) in this event. The present study aimed to investigate the roles of one potential lncRNA, lncRSPH9-4, in meningitic E. coli infection of BMECs. LncRSPH9-4 was cytoplasm located and significantly up-regulated in meningitic E. coli-infected hBMECs. Electrical cell-substrate impedance sensing (ECIS) measurement and Western blot assay demonstrated lncRSPH9-4 overexpression in hBMECs mediated the BBB integrity disruption. By RNA-sequencing analysis, 639 mRNAs and 299 miRNAs were significantly differentiated in response to lncRSPH9-4 overexpression. We further found lncRSPH9-4 regulated the permeability in hBMECs by competitively sponging miR-17-5p, thereby increasing MMP3 expression, which targeted the intercellular tight junctions. Here we reported the infection-induced lncRSPH9-4 aggravated disruption of the tight junctions in hBMECs, probably through the miR-17-5p/MMP3 axis. This finding provides new insights into the function of lncRNAs in BBB integrity during meningitic E. coli infection and provides the novel nucleic acid targets for future treatment of bacterial meningitis. 相似文献
19.
Da-Zhi Wang Ling-Fen Kong Yuan-Yuan Li Zhang-Xian Xie 《International journal of molecular sciences》2016,17(8)
Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment. 相似文献
20.
Katarzyna Barczak Mirona Palczewska-Komsa Mariusz Lipski Dariusz Chlubek Jadwiga Buczkowska-Radliska Irena Baranowska-Bosiacka 《International journal of molecular sciences》2021,22(1)
The aim of the present study was to investigate the new silicate cement mineral trioxide aggregate (MTA Repair HP) with respect to its effect on the inflammation process involving the tooth and periodontal tissues. The composition of MTA Repair HP was supplemented with plasticizer agents which can have a negative effect on the modulation of tooth inflammation. The silicate-based material in question is widely used in regeneration of the pulp-dentin complex, treatment of perforations of various locations in the tooth, as well as in surgical treatment of the complications of periapical tissue. The improved bioceramic restorative cement can affect the expression of metalloproteinases MMP-2 and MMP-9 in monocytes/macrophages involved in modulation of inflammation and regenerative processes of the tooth and periodontal tissues. The novel aspect of the present study lies in the application of the model of THP-1 monocyte/macrophage and applying the biomaterial in direct contact with the cells. Hence, it provides a representation of clinical conditions with respect to regenerative pulp and periodontal treatment with the use of MTA Repair HP. A lack of macrophage activation (as measured with flow cytometry) was found. Moreover, the study identified a lack of expression stimulation of the studied metalloproteinases (with the use of Western blotting and fluorescent microscopy). Similarly, no increase in MMP-2 and MMP-9 concentration was found (measured by ELISA method) in vitro when incubated with MTA Repair HP. Based on the results it can be concluded that new MTA Repair HP does not increase the inflammatory response in monocytes/macrophages associated with the activity of the described enzymes. It can also be speculated that they do not affect the process of dentin regeneration in which MMP-2 and MMP-9 play significant roles. 相似文献