首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
理解软件代码的功能是软件复用的一个重要环节。基于主题建模技术的代码理解方法能够挖掘软件代码中潜在的主题,这些主题在一定程度上代表了软件代码所实现的功能。但是使用主题建模技术所挖掘出的代码主题有着语义模糊、难以理解的弊端。潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)技术是一种比较常用的主题建模技术, 其在软件代码主题挖掘领域已取得了较好的结果,但同样存在上述问题。为此,需要为主题生成解释性文本描述。基于LDA的软件代码主题摘要自动生成方法除了利用主题建模技术对源代码生成主题之外,还利用文档、问答信息等包含软件系统功能描述的各类软件资源挖掘出代码主题的描述文本并提取摘要,从而能够更好地帮助开发人员理解软件的功能。  相似文献   

2.
徐啸  金涛  王建民 《软件学报》2018,29(11):3295-3305
在健康领域,诊疗过程对于医疗质量至关重要.临床路径集合了各种医疗知识,是对诊疗过程进行标准化的重要途径.然而,当前大多数临床路径由专家研讨制定,往往静态不变,难以部署和实施.在我们之前的工作中,提出了一种基于主题的临床路径挖掘算法,可以从医疗数据中抽取历史执行路径,客观反映数据中实际存在的医疗模式.算法首先通过主题模型将繁杂的诊疗活动聚合成若干主题,而每个诊疗日就可以表示为一个主题分布,一个病人的诊疗日志也相应的转换为一个主题序列,然后利用过程挖掘方法从这些主题序列中生成基于主题的临床路径模型.但传统主题模型(LDA)的聚类效果往往难以满足医疗数据的特点,导致主题质量不高,影响最终过程模型的可解释性.其中,一个普遍的问题就是LDA无法保证两个相似的诊疗日所得的主题分布也是相似的,这是由于其忽略了诊疗日之间原有的相似性特征.在本文中,我们提出了一种优化的主题模型算法,该算法引入了基于本体生成的诊疗日相似性约束,可以有效提升聚类效果.实验结果表明,我们提出的方法能够发现更符合医疗领域特点的高质量主题,进而为基于主题的临床路径的挖掘奠定基础.  相似文献   

3.
ContextSoftware development projects involve the use of a wide range of tools to produce a software artifact. Software repositories such as source control systems have become a focus for emergent research because they are a source of rich information regarding software development projects. The mining of such repositories is becoming increasingly common with a view to gaining a deeper understanding of the development process.ObjectiveThis paper explores the concepts of representing a software development project as a process that results in the creation of a data stream. It also describes the extraction of metrics from the Jazz repository and the application of data stream mining techniques to identify useful metrics for predicting build success or failure.MethodThis research is a systematic study using the Hoeffding Tree classification method used in conjunction with the Adaptive Sliding Window (ADWIN) method for detecting concept drift by applying the Massive Online Analysis (MOA) tool.ResultsThe results indicate that only a relatively small number of the available measures considered have any significance for predicting the outcome of a build over time. These significant measures are identified and the implication of the results discussed, particularly the relative difficulty of being able to predict failed builds. The Hoeffding Tree approach is shown to produce a more stable and robust model than traditional data mining approaches.ConclusionOverall prediction accuracies of 75% have been achieved through the use of the Hoeffding Tree classification method. Despite this high overall accuracy, there is greater difficulty in predicting failure than success. The emergence of a stable classification tree is limited by the lack of data but overall the approach shows promise in terms of informing software development activities in order to minimize the chance of failure.  相似文献   

4.
The success of a Free/Libre/Open Source Software (FLOSS) project has been evaluated in the past through the number of commits made to its configuration management system, number of developers and number of users. Most studies, based on a popular FLOSS repository (SourceForge), have concluded that the vast majority of projects are failures.This study’s empirical results confirm and expand conclusions from an earlier and more limited work. Not only do projects from different repositories display different process and product characteristics, but a more general pattern can be observed. Projects may be considered as early inceptors in highly visible repositories, or as established projects within desktop-wide projects, or finally as structured parts of FLOSS distributions. These three possibilities are formalized into a framework of transitions between repositories.The framework developed here provides a wider context in which results from FLOSS repository mining can be more effectively presented. Researchers can draw different conclusions based on the overall characteristics studied about an Open Source software project’s potential for success, depending on the repository that they mine. These results also provide guidance to OSS developers when choosing where to host their project and how to distribute it to maximize its evolutionary success.  相似文献   

5.
一种基于密度的自适应最优LDA模型选择方法   总被引:13,自引:0,他引:13  
主题模型(topic models)被广泛应用在信息分类和检索领域.这些模型通过参数估计从文本集合中提取一个低维的多项式分布集合,用于捕获词之间的相关信息,称为主题(topic).针对模型参数学习过程对主题数目的指定和主题分布初始值非常敏感的问题,作者用图的形式阐述了LDA(Latent Dirichlet Allocation)模型中主题产生的过程,提出并证明当主题之间的相似度最小时模型最优的理论;基于该理论,提出了一种基于密度的自适应最优LDA模型选择方法.实验证明该方法可以在不需要人工调试主题数目的情况下,用相对少的迭代,自动找到最优的主题结构.  相似文献   

6.
LDA作为文本主题识别领域中使用最广泛的模型之一,其基于词袋模型的假设简单化地赋予词汇相同的权重,使得主题分布易向高频词倾斜,影响了识别主题的语义连贯性。本文针对该问题提出一种基于图挖掘的LDA改进算法GoW-LDA,首先基于特征词对在文本中的共现先后关系构建语义图模型,然后利用网络统计特征中节点的加权度,将文本的语义结构特点和关联性以权重修正的形式融入LDA主题建模中。实验结果显示,GoW-LDA相较于传统LDA和基于TF-IDF的LDA,能够大幅降低主题模型的混淆度,提高主题识别的互信息指数,并且有效减少模型的训练时间,为文本主题识别提供了一种新的解决思路。  相似文献   

7.
社交网络发展迅速,即时消息系统已成为人们日常生活中必不可少的沟通交流工具。在线群聊能使人们迅速交流生活、技术及工作等信息,但是由于群聊信息更新较快,大量的信息导致跟进群聊话题是困难的。传统的主题挖掘模型不能很好地适用于群聊文本的挖掘。通过对群聊文本的特征进行分析,提出一种基于GRU和LDA的群聊会话主题挖掘(GLB-GCTM, GRU and LDA Based Group Chat Topic Mining)模型,解决了传统主题模型不能解决的词语顺序问题。首先,假定每个文档有一个基于高斯分布的主题向量,然后根据GRU原理产生每个词的隐含状态,根据当前词的隐含状态的伯努利分布确定当前词是否为停用词,以决定所使用的语言模型。该方法使用笔者加入的10个QQ群最近3个月的群聊数据集进行试验验证,结合对比实验评估标准,该模型能够有效识别出群聊文本中的主题。  相似文献   

8.
代码复用是重要的软件复用方式之一,复用者需要理解软件代码实现的功能方能有效实施软件复用。基于主题建模技术的程序理解方法逐渐受到研究人员的重视,它能够帮助软件开发者和使用者更好地理解软件的功能。目前,基于主题建模技术的程序理解方法一般欠缺对挖掘出的Topic的语义分析,为此提出的基于代码静态分析和LDA技术的代码功能挖掘(Code Function Mining,CFM)方法可作为对这类方法的补充。CFM是一套以代码为研究对象的挖掘、筛选、组织和描述主题(Topic)的方法,该方法能够生成带描述的功能型Topic的层次结构,以供使用者更清晰和方便地浏览、学习软件的功能。功能型Topic的描述能够帮助复用者理解代码功能,其层次结构能够让复用者从不同抽象层次理解代码功能。CFM方法包括4个部分:挖掘Topic、筛选Topic、组织Topic、描述Topic。以CFM方法为基础,设计并实现了一个CFM工具。CFM工具能够分析用户提交的代码,通过Web页面向用户展示带描述的功能型Topic的层次结构。最后,对CFM方法中的几个关键算法进行实验分析,验证了CFM方法的有效性。  相似文献   

9.
随着微博的日趋流行,新浪微博已成为公众获取和传播信息的重要平台之一,针对微博数据的话题挖掘也成为当前的研究热点。提出一个面向大规模微博数据的话题挖掘方法。首先对大规模微博数据进行分析,基于Bloom Filter算法对数据进行去重处理,针对微博的特有结构,对文本进行预处理,提出改进的LDA主题模型Social Network LDA(SNLDA),采用吉布斯采样法进行模型推导,挖掘出微博话题。实验结果表明,方法能有效地从大规模微博数据中挖掘出话题信息。  相似文献   

10.
缺陷分析是软件工程领域内一个重要的课题,软件开发过程中的历史信息(缺陷记录、各个版本的源代码等)为缺陷分析这一课题提供了很有价值的经验数据。如何有效地利用这些数据进行缺陷分析,是软件库挖掘研究所面临的挑战。本文从统计方法和程序分析方法两个主要方面介绍了软件开发的历史信息是如何被用来进行缺陷分析的。  相似文献   

11.
    
In this paper, we present a ‘forward-looking’ decision support framework that integrates up-to-date metrics data with simulation models of the software development process in order to support the software project management control function. This forward-looking approach (called the PROMPT method) provides predictions of project performance and the impact of various management decisions. Tradeoffs among performance measures are accomplished using outcome based control limits (OBCLs) and are augmented using multi-criteria utility functions and financial measures of performance to evaluate various process alternatives. The decision support framework enables the program manager to plan, manage and track current software development activities in the short term and to take corrective action as necessary to bring the project back on track. The model provides insight on potential performance impacts of the proposed corrective actions. A real world example utilizing a software process simulation model is presented.  相似文献   

12.
孙媛  赵倩 《中文信息学报》2017,31(1):102-111
如何获取藏文话题在其他语种中的相关信息,对于促进少数民族地区的社会管理科学化水平、维护民族团结和国家统一、构建和谐社会具有重要意义。目前大多数研究集中在英汉跨语言信息处理方面,针对藏汉跨语言研究较少。如何根据藏语、汉语的特点,并结合目前藏语信息处理的研究现状,实现藏汉多角度的社会网络关系关联,同步发现关注话题并进行数据比较,是迫切需要解决的问题。该文在藏汉可比语料的基础上,利用词向量对文本词语进行语义扩展,进而构建LDA话题模型,并利用Gibbs sampling进行模型参数的估计,抽取出藏语和汉语话题。在LDA话题模型生成的文档-话题分布的基础上,提出一种基于余弦相似度、欧氏距离、Hellinger距离和KL距离四种相似度算法的投票方法,来实现藏汉话题的对齐。  相似文献   

13.
    
Literature on supervised Machine-Learning (ML) approaches for classifying text-based safety reports for the construction sector has been growing. Recent studies have emphasized the need to build ML approaches that balance high classification accuracy and performance on management criteria, such as resource intensiveness. However, despite being highly accurate, the extensively focused, supervised ML approaches may not perform well on management criteria as many factors contribute to their resource intensiveness. Alternatively, the potential for semi-supervised ML approaches to achieve balanced performance has rarely been explored in the construction safety literature. The current study contributes to the scarce knowledge on semi-supervised ML approaches by demonstrating the applicability of a state-of-the-art semi-supervised learning approach, i.e., Yet, Another Keyword Extractor (YAKE) integrated with Guided Latent Dirichlet Allocation (GLDA) for construction safety report classification. Construction-safety-specific knowledge is extracted as keywords through YAKE, relying on accessible literature with minimal manual intervention. Keywords from YAKE are then seeded in the GLDA model for the automatic classification of safety reports without requiring a large quantity of prelabeled datasets. The YAKE-GLDA classification performance (F1 score of 0.66) is superior to existing unsupervised methods for the benchmark data containing injury narratives from Occupational Health and Safety Administration (OSHA). The YAKE-GLDA approach is also applied to near-miss safety reports from a construction site. The study demonstrates a high degree of generality of the YAKE-GLDA approach through a moderately high F1 score of 0.86 for a few categories in the near-miss data. The current research demonstrates that, unlike the existing supervised approaches, the semi-supervised YAKE-GLDA approach can achieve a novel possibility of consistently achieving reasonably good classification performance across various construction-specific safety datasets yet being resource-efficient. Results from an objective comparative and sensitivity analysis contribute to much-required knowledge-contesting insights into the functioning and applicability of the YAKE-GLDA. The results from the current study will help construction organizations implement and optimize an efficient ML-based knowledge-mining strategy for domains beyond safety and across sites where the availability of a pre-labeled dataset is a significant limitation.  相似文献   

14.
基于MB-LDA模型的微博主题挖掘   总被引:5,自引:0,他引:5       下载免费PDF全文
随着微博的日趋流行,Twitter等微博网站已成为海量信息的发布体,对微博的研究也需要从单一的用户关系分析向微博本身内容的挖掘进行转变.在数据挖掘领域,尽管传统文本的主题挖掘已经得到了广泛的研究,但对于微博这种特殊的文本,因其本身带有一些结构化的社会网络方面的信息,传统的文本挖掘算法不能很好地对它进行建模.提出了一个基于LDA的微博生成模型MB-LDA,综合考虑了微博的联系人关联关系和文本关联关系,来辅助进行微博的主题挖掘.采用吉布斯抽样法对模型进行推导,不仅能挖掘出微博的主题,还能挖掘出联系人关注的主题.此外,模型还能推广到许多带有社交网络性质的文本中.在真实数据集上的实验表明,MB-LDA模型能有效地对微博进行主题挖掘.  相似文献   

15.
基于动态主题模型融合多维数据的微博社区发现算法   总被引:1,自引:0,他引:1  
随着微博用户的不断增加,微博网络已经成为用户进行信息交流的平台.针对由于博文长度受限,传统的社区发现算法无法有效解决微博网络的稀疏性等问题,提出了DC-DTM算法.DC-DTM算法首先将微博网络映射为有向加权网络,网络中边的方向反映结点之间的关注关系,利用提出的DTM模型计算出结点之间的语义相似度,并将其作为节点间连边的权重.DTM模型是一种微博主题模型,该模型不仅能够挖掘博客的主题分布,而且能计算出某一主题中用户的影响力大小.其次,利用提出的复杂度低的标签传播算法WLPA进行微博网络的社区发现.该算法的初始化阶段将影响力大的用户结点作为初始结点,标签按照结点的影响力从大到小进行传播,克服了传统标签传播算法的逆流现象,提高了标签传播算法的稳定性.在真实数据上的实验表明,DTM模型能很好地对微博进行主题挖掘,DC-DTM算法能够有效地挖掘出微博网络的社区.  相似文献   

16.
构件库技术的研究与发展   总被引:32,自引:1,他引:31  
1.引言软件工程的目标是致力于提高软件生产效率和软件质量,摆脱手工作坊式的开发方式。如果每个应用软件系统的开发都从头开始,其中必然存在大量的重复劳动。软件复用是一条提高软件生产效率和软件质量的切实可行的解决方案,其出发点是应用系统的开发以已有的工作为基础,充分利用已有系统的开发中所积累的知识和经验进行新的开发。这样软件开发的重点就可以集中于应用系统中的特有构成成分上。软件构件只有在数量上达到了一定的规模才能真正满足软件复用和基于构件的软件开发(CBSD)的需求,因此必须有一个强有力的工具来对这些数量庞大的软件构件进行管理。构件库作为一种支持软件复用的基础设施,它提供对软件构件进行描述、分类、存储和检索等功能。  相似文献   

17.
传统财经领域研究通常关注结构化数据;较少关注非结构化的财经类文本数据;并且财经文本数据蕴含的信息量巨大。针对上述问题;提出SGC-LDA(sliding-window;genetic factor and common financial topic LDA)财经文本主题研究方法。基于通用财经主题的文本噪声过滤建模;以降低噪声数据的影响;基于滑动窗口技术;同时引入财经遗传因子;保证主题的连续性;完成能够实现财经文本主题模型的SGC-LDA算法。基于真实财经文本的实证研究表明;财经文本主题主要由投资理财、民生时事、商业动态、金融市场、宏观经济、产业经济六个主要部分组成;结合财经主题特征词和财经文本对财经主题的扩充;能够更完整准确地描述其财经主题。同时模型本身表现出一定的去噪能力;且与基准模型的对比分析;也证实了所提出模型在财经主题建模方面优越的分类性能和主题连续性。  相似文献   

18.
李芳  何婷婷  宋乐 《计算机科学》2012,39(6):159-162
主要研究如何从在线评论文本中挖掘产品的评价主题,并对其倾向性进行分析。首先采用一种启发式规则和共现概率统计相结合的方法识别文本集合中的名词性短语,再运用LDA模型挖掘潜在的评价主题。然后利用多特征融合的方法计算句子的倾向性,进而根据特征词群统计出各主题的倾向性结果。最后通过对网络汽车评论文本语料的实验证实了该方法的有效性。  相似文献   

19.
为了解决传统的文本主题模型对微博主题挖掘准确率低及不考虑主题之间关联的问题,针对中文微博语料本身的特点,分析LDA和HMM模型优缺点,提出了微博主题挖掘模型MB-HL(Microblog-Hidden Markov Model Latent Dirichlet Allocation)。该模型用逐条微博作为处理单元,建立分布主题-词语矩阵并进行优化,通过LDA模型对微博用户不同的行为建模并提取特征,利用HMM模型强大的时序状态建模能力弥补LDA在主题相关性上的不足,采用Gibbs采样进行推理求解。在真实的新浪微博数据上对比实验表明MB-HL模型能提高近9%主题关键词的准确度,并能有效地发现主题之间的关联关系。  相似文献   

20.
以微博为代表的社交网络已成为社会舆情的战略要地。对于社交网络中隐含主题社区的发掘,具有较高的商业推广和舆情监控价值。近年来,概率生成主题模型LDA(Latent Dirichlet Allocation)在数据挖掘领域得到了广泛应用。但是,一般而言,LDA适用于处理文本、数字信号数据,并不能合理地用来处理社交网络用户的关系数据。对LDA进行修改,提出适用于处理用户关系数据的Tri-LDA模型,挖掘社交网络中的主题社区。实验结果表明,基于Tri-LDA模型,进行机器学习所得到的结果基本能够反映社交网络上真实的主题社区分布情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号