首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sharp-crested rectangular weirs used for discharge measurement in channels and laboratories are experimentally investigated. Height and width of weir plate are the two parameters characterizing the head-discharge relationship. Laboratory experiments are conducted by measuring the discharge and the head over the weir for variable weir heights and widths. Applicability of various formulations for the discharge coefficient are investigated. Experiments indicate that discharge is independent of weir height, when the weir is operated within an appropriate discharge range. Average velocity over the weir plotted against the weir head displays universal characteristics such that it can be used in the expression of discharge over the weir, eliminating the need for a discharge coefficient. The head-discharge relationship for a rectangular weir has distinct features for the partially contracted weirs and for the fully contracted slit weirs.  相似文献   

2.
In this paper the stage-discharge equation of a half-cycle cosine weir is theoretically deduced applying the Π-Theorem of dimensional analysis and the self-similarity theory. The coefficients of the new stage-discharge relationships are estimated using the results of the experimental runs by Salehi et al..  相似文献   

3.
    
The stage-discharge relationship of a weir is essential for posteriori calculations of flow discharges. Conventionally, it is determined by regression methods, which is time-consuming and may subject to limited prediction accuracy. To provide a better estimate, the machine learning models, artificial neural network (ANN), support vector machine (SVM) and extreme learning machine (ELM), are assessed for the prediction of discharges of rectangular sharp-crested weirs. A large number of experimental data sets are adopted to develop and calibrate these models. Different input scenarios and data management strategies are employed to optimize the models, for which performance is evaluated in the light of statistical criteria. The results show that all three models are capable of predicting the discharge coefficient with high accuracy, but the SVM exhibits somewhat better performance. Its maximum and mean relative error are respectively 5.44 and 0.99%, and 99% of the predicted data show an error below 5%. The coefficient of determination and root mean square error are 0.95 and 0.01, respectively. The model sensitivity is examined, indicative of the dominant roles of weir Reynolds number and contraction ratio in discharge estimation. The existing empirical formulas are assessed and compared against the machine learning models. It is found that the relationship proposed by Vatankhah exhibits the highest accuracy. However, it is still less accurate than the machine learning approaches. The study is intended to provide reference for discharge determination of overflow structures including spillways.  相似文献   

4.
    
The classical sharp-crested weirs are not suitable to implement in irrigation canals with high suspended sediment flow. Over the time, sediment deposition occurs in the upstream of sharp-crested weirs and causes a time variant water level raise in the upstream and consequently variable discharge coefficients. A series of laboratory experiments was carried out to test the hypothesis of strong turbulent formation and three-dimensional flow in the upstream of half-cosine sharp-crested weirs to prevent sediment deposition. To verify this hypothesis, a series of laboratory experiment was carried out for different weir heights and top widths in free and submerged flow conditions. Mean flow structure and turbulent characteristics of half-cosine and rectangular sharp-crested weirs were measured using a micro-Acoustic Doppler Velocimeter (ADV) probe. It was found that the streamwise velocities of half-cosine weirs were higher than the corresponding rectangular weirs, however, the velocity fluctuations in this direction were similar for both types of weirs. Velocity fluctuations in vertical and transverse directions were found to be significant in half-cosine weirs. The results showed higher turbulent kinetic energy below the crest level for half-cosine weirs which made them capable of sediment resuspension and sediment removal. In was found that the introduced weir model are suitable structures for passage of small floating debris and sediments. A head-discharge formulation was also developed based on the geometry of half-cosine weir in free flow and a constant discharge coefficient was obtained by solving the Fresnel integrals. For practical purposes, semi-empirical formulations were also developed to estimate flow discharge in both free and submerged flow conditions.  相似文献   

5.
    
Laboratory experiments were carried out to investigate the discharge characteristics of rectangular sharp-crested weirs under free flow condition. The performances of available discharge formulas have been evaluated by using the experimental data sets of present and previous studies. Error statistics of our experimental data indicate that the recent stage-discharge relationships show satisfactory performances. Discharge formula in terms of weir Reynolds number proposed by Vatankhah gives the highest accuracy among the existing slit weir equations, with E±4=100.00% (i.e. percent error less than or equal to ±4) and a mean absolute error |E|m=0.88%. The full-range discharge equation presented by Bijankhan and Mahdavi Mazdeh shows the highest accuracy among the relationships in terms of weir contraction ratio, with E±4=100.00%, |E|m=0.91% for slit weirs and, E±4=94.64%, |E|m=1.60% for partially contracted weirs, respectively. The weir velocity formulae suggested by Gharahjeh et al. exhibit the relatively better performance, with E±4=98.41%, |E|m=1.34% for slit weirs and, E±4=91.07%, |E|m=1.91% for contracted weirs, respectively. Statistical results of this study confirm the weir velocity approach presented by Aydin et al. and show that, the weir velocity is a predominant quantity for rectangular sharp-crested weirs, unique characteristics of the weir velocity curves make it more suitable for expressing the discharges. Moreover, it is important to point out that the performance of weir velocity formulae can be further improved.  相似文献   

6.
In this paper, the hydraulic characteristics of a sharp crested trapezoidal side weir have been experimentally and theoretically investigated. It was found that the DeMarchi coefficient of discharge for a sharp crested trapezoidal side weir in subcritical flow is related to the main channel Froude number, the side slope of weir, ratio of weir height to upstream depth of flow and ratio of weir length to upstream depth of flow. Suitable equations for the discharge coefficient are also obtained.  相似文献   

7.
    
Flumes with either width contractions or raised beds to force modular flow conditions (i.e. a transition from sub- to super-critical flow) are a widely used instrument for the measurement of flow rate. The conservation of mass, written as the continuity equation, and the conservation of energy are combined with the existence of a critical depth point to derive a theoretical equation for the discharge as a function of the upstream water depth. This derivation requires a number of assumptions regarding the flow both upstream and in the throat of the contraction. The international standard covering the use of such flumes, ISO4359, places restrictions on the upstream position at which the water depth should be measured, which this work shows to be unnecessary, at least for the small (100 mm throat width) flumes examined. The assumption that critical depth occurs at the end of the flume throat is also shown to be incorrect, but has negligible effect on discharge calculation using the ISO4359 method.  相似文献   

8.
A simple model is proposed for predicting the dimensionless isovel contours in straight ducts and open channels. It is assumed that each element of the boundary influences the velocity at an arbitrary point in the cross section. Then, the total effect of the boundary can be obtained using integration along the wetted perimeter. In this paper, power and logarithmic laws are used, while any velocity profile can be applied in the model. The model is applied to calculate the normalized isovel contours in rectangular channels. Then they are used, in combination with a single-point velocity measurement at a cross section of the uniform flow, to estimate the discharge. The kinetic energy and momentum correction factors, and the ratio of maximum to mean velocity, are also calculated from isovel patterns. Calibration and validation of the model are carried out by comparing the results obtained with measurements of the velocity in the main flow direction along the centerline of a rectangular flume as well as in the transverse direction. Each point of measurement can be used to estimate the discharge. Then, the estimated discharge is compared with the actual measured one. Depending on the position of the measurement, the deviation of the calculated and measured discharges will be altered. Model predictions are well correlated with experimental data for rectangular open channels.  相似文献   

9.
    
The self-cleaning and semi-modular triangular broad-crested weir without crest height was firstly subjected to a rigorous theory. The main objective was to establish the discharge relationship as well as that of the resulting discharge coefficient. For this, both energy equation and momentum equation applied between two judiciously chosen sections were necessary and proved to be essential. Contrary to previous studies related to flow metering, the relationship governing the flow rate was established by taking into account the approach flow velocity. Secondarily, the device was subjected to an intense experimental program to confirm the validity of the proposed theoretical relationships. It was observed an excellent agreement between the experimental and theoretical values of the flow rate. It has been found that the experimental and theoretical flow rates are related by a linear relationship such that QExp=1.0057QTh. The constant clearly indicates that the flow rate theoretical formula only needs a slight correction. The theoretical stage-discharge formula was then very accurate even no calibration parameter was employed. The theoretical development has shown that the discharge coefficient Cd only depends on the dimensionless parameter M1 that reflects the effect of the contraction of the cross-section of the approach channel. The variation curve of Cd(M1) showed that Cd increases in the range [0.233; 0.277] with the increase in M1.  相似文献   

10.
11.
    
Thin-plate weirs are the simplest and least expensive devices, which frequently have been employed in many water projects. In this research, a unique type of Sharp-Crested V-notch weir, entitled SCVW, has been introduced. The hydraulic characteristics of the present weir were investigated theoretically and experimentally under free aerated and non-aerated flow conditions in an open channel for large physical models. To investigate the variations of the discharge coefficient of SCVW versus weir height and vertex angle, a comprehensive laboratory experiments were conducted by measuring the discharge and the water head over the crest of weir. Possibility of different formulations for the head- discharge relationship of SCVW was examined and suitable analytical equation was proposed. The computed discharge using the suggested equation was within 0–10% of the observed ones. According to the experimental observations, the SCVW showed better performance in comparison with normal wire.  相似文献   

12.
    
In this paper, for the first time, the DC of triangular, rectangular, and parabolic weirs is simulated by a new learning machine called “Robust Extreme Learning Machine” (RELM). The used laboratory data are divided into two categories: training (70% data) and testing (30% data). In the next step, the number of neurons inside the hidden layer is examined. For the structure of the proposed RELM algorithm, 10 hidden layer neurons are embedded. For the learning machine used in the present study, six different activation functions are evaluated that the Sigmoid activation function has better performance and is used for the RELM structure. Next, the calibration parameter of the RELM algorithm is discussed. The optimal regularization parameter is selected for the present study equal to 0.0001. Then, using parameters affecting the DC, four RELM models are developed. By performing various analyzes, the superior RELM model and the most effective input parameters are identified. Also, comparing the performance of the RELM model with ELM shows the superiority of the RELM algorithm. For the superior model, a relative derivative sensitivity analysis is performed to investigate the behaviour of the input parameters on the DC. Finally, an equation for estimating the DCs of triangular, rectangular, and parabolic weirs is proposed.  相似文献   

13.
    
Side weir is placed at the channel bank as a head regulator or a diversion device. Flow over a side weir has been the subject of many research studies considering its three dimensional and complicated characteristics. However, the labyrinth side weirs warrant further research due to their higher efficiency compared to linear side weirs. In this paper, subcritical flow characteristics and discharge coefficient for both symmetric and asymmetric triangular labyrinth side weirs were studied experimentally. The results show that asymmetric labyrinth side weirs have higher discharge coefficient compared to symmetric labyrinth side weirs; since a larger portion of the crest is orthogonal to the flow. Using the present laboratory data, general equations were proposed for the estimation of discharge coefficient of both symmetric and asymmetric triangular labyrinth side weirs. The results of this study can be useful to design side weirs with high hydraulic performance.  相似文献   

14.
    
A new design of a labyrinth weir is introduced in this study by adding a square pool to the vertex of a one-cycle triangular labyrinth weir with a sidewall angle of 45°. The addition of the square pool increased weir length without causing an excessive nappe interaction, and as a result, reduced the head water over the weir with the same discharge. Laboratory experiments were carried out to investigate the hydraulic performance of the new design with a potential application in pool-weir fishways. Mean and turbulence characteristics of flow for different weir geometries and in both free and submerged flow regimes were measured to be used for prediction of fish behaviour in the upstream of the proposed weir models. Discharge coefficients based on channel width and weir length were calculated. It was found that the new design can significantly increase the capacity of triangular labyrinth weirs and provide financial advantages in construction over triangular labyrinth weirs without pools in low discharges. In submerged flow conditions, the proposed model performed better than sharp-crested linear weirs in low discharges. Contour plots of the three-dimensional velocity components showed a region of strong mean flow around the neck of the new weir model. Turbulent characteristics such as turbulent kinetic energy, power spectra, exuberance ratio, and joint probability distribution functions of velocity fluctuations were extracted from instantaneous three dimensional velocities for different weir depths and flow regimes. Two vertical planes were identified based on the highest turbulent mixing in free and submerged flow regimes. The depths contributing the most to turbulent mixing were identified; active depths decreased as the flow regime changed from free to submerge flow regime.  相似文献   

15.
A side weir is a hydraulic control structure used in irrigation and drainage systems and combined sewer systems. A comprehensive laboratory study, including 843 tests for the discharge coefficient of a sharp-crested rectangular side weir in a straight channel, was conducted in a large physical model under subcritical flow conditions. The discharge coefficient is a function of the upstream Froude number, the ratios of weir length to channel width, weir length to flow depth, and weir height to flow depth. An equation was developed considering all dimensional parameters for discharge coefficient of the sharp-crested rectangular side weir. The average error of the proposed equation is 4.54%. The present study data were compared with ten different discharge coefficient equations developed by several researchers. The study also presents water surface profile and surface velocity streamlines.  相似文献   

16.
    
Side weirs are diverting structures and usually used for diverting and controlling the water flow into the side open channel. The present study deals with an experimental study regarding the hydraulic performance of side weirs with semi-circular vertical sections along the main channel. As flow depth of the main channel increases the top flow width of the semi-circular side weir (SCSW) increases which is an advantage when high discharge enters the main channel and should be immediately diverted for safety reasons. In this study, the flow discharge of semi-circular sharp-crested side weirs and their affecting parameters are investigated. To investigate the hydraulic behavior and geometric characteristics of the SCSWs, a comprehensive laboratory study including 155 tests (for three weir diameters 0.25, 0.30 and 0.40 m) was conducted in a physical model under subcritical flow conditions. Flow discharge of the SCSW was investigated in relation to height, diameter and flow head of side weir, also approach Froude number (Froude number at upstream end of the side weir) and main channel width. Three different discharge models were developed based on; purely dimensional analysis technique, classical weir equation with linear water surface and classical weir equation with horizontal water surface profile (conventional weir theory along with dimensional analysis technique). The presented mathematical discharge models enable estimation of discharge along the SCSW with acceptable accuracy (best model has an average error of 1.87% with a maximum error of 6.31%) compared with the measured data under subcritical flow conditions. Additionally, a relationship was proposed for computing the limiting flow depth at the downstream end of the SCSW. Experimental results confirm that the proposed relationship well explains the behavior of flow over the SCSW regarding the downstream flow conditions.  相似文献   

17.
    
Labyrinth weirs can increase the flow discharge capacity for a specific head and width by increasing the weir length. This paper studies the flow behavior of labyrinth weirs using Flow-3D® software. The main goal is to evaluate the capability of the response surface methodology (RSM), especially central composite design (CCD), to describe the performance of labyrinth weirs. Traditional and RSM-CCD methodologies are applied using experimental data of previous researchers and numerical data of the present study, respectively. Results show that RSM-CCD can produce an acceptably accurate model for the discharge coefficient of labyrinth weirs with only a small fraction of the data required for the traditional model. In addition, the discharge coefficient of a labyrinth weir decreases by increasing head and decreasing sidewall angle due to the inflow contraction and nappe interference in inlet and outlet cycles, respectively. The discharge efficiency can be up to 4.5 times higher for a labyrinth weir compared to a linear weir. Finally, a new method is introduced for designing labyrinth weirs.  相似文献   

18.
    
Sophisticated stage-discharge rating curves for radial gates are essential to modernization efforts in water conservancy and irrigation projects. However, it is a challenging hydraulic issue to accurately determine discharges through radial gates, especially when subjected to highly submerged flow conditions. According to the variation trend of jet Froude number and the mechanism of energy dissipation subjected to submerged flows, a new criterion was proposed to subdivide submerged flow into partially submerged and totally submerged flows. Thus, the three stage-discharge equations were developed for free flow, partially submerged flow and totally submerged flow, respectively. With the aid of the experimental data of single radial gate and the field data of multi-radial gates, the proposed discharge calibration method, referred to as the identification method, was tested and verified. The results indicated the discharge prediction accuracies were satisfactory, in which the mean absolute percentage errors were less than 10%. The proposed method is feasible and easily programmed.  相似文献   

19.
A numerical model was used to study the effect of change in specific energy height along a side weir on flow. Discharge coefficient was considered as a local variable that includes flow depth and the angle of the deflected water jet along side weir. Hydraulic profile on the weir plane and the hydraulic head on the weir were obtained using two dimensionless parameters ψ and m as a function of Froude number. Flow depths and flow rates were then computed and minimum standard errors were determined based upon these parameters. The agreement between computed values and observations was demonstrated. It was concluded that rates of flow are considerably affected by the variation of specific energy along the side weir when weir head is based on flow depth at the weir plane. Considerable deviations from the constant specific energy assumption may be observed in this case specially when a great change in flow rates exists along side weirs with zero end discharges.  相似文献   

20.
    
Flumes with a local contraction of the channel width are a common way for accurately measuring the flow discharge. In this paper, the outflow process of rectangular broad and sharp-crested contraction devices is modeled using the dimensional analysis and the incomplete self-similarity condition. The proposed theoretical stage-discharge relationship is tested using measurements available in the literature. The proposed power equation is characterized by a value of the exponent close to 1.5 and a coefficient depending on the contraction ratio. The proposed flow-measuring flumes are characterized by a good accuracy of the measured discharge (ranging from −2.71 to 3.28% for the broad-crested contraction device and in the range from −0.24 to 0.31% for the sharp-crested one). Even if both flume types have good accuracy of the measured discharge (less than the limit of ±5% suggested in the literature), the developed analysis demonstrated that the sharp-crested device is characterized by the lowest values of the errors in the estimate of discharge, and this result increases the interest of this device in practical applications. The advantage of the proposed approach is combining an accurate estimate of the flow discharge and working regardless of the discharge coefficient estimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号