共查询到20条相似文献,搜索用时 0 毫秒
1.
基于深度学习的遥感影像图像分割技术使用越来越广泛,针对现有算法存在参数量较大、细节部分提取结果差等问题,提出一种基于改进DeepLabv3+的道路图像分割方法。将轻量型网络MobileNetV2引入改进后的池化金字塔模型用以提取中阶特征图,增强了不同感受野之间的相关性;并采用多尺度拼接融合方法生成高阶特征图,同时引入注意力机制来进一步加强对图像特征的提取效果。实验结果表明,所提方法相比于DeepLabv3+模型mIoU提高了5%,有效提升了遥感图像的分割精度。 相似文献
2.
3.
由于深度学习中语义分割模型参数量较大且算法耗时较长,不适合部署到移动端,针对此问题,提出了一种基于改进DeepLabv3+网络的轻量级语义分割算法.首先,采用MobileNetv3代替原DeepLabv3+语义分割模型特征提取骨干网络以降低模型复杂度,加快模型运行速度;其次,将空洞空间金字塔池化模块中的标准卷积替换为深... 相似文献
4.
在进行口罩遮挡人脸图像修复时,往往需要进行人脸口罩的分割,分割的结果将会对后续的修复工作产生较大的影响。因此,为了更好地实现分割,通过改进图像分割网络DeepLabv3+,提出了一种针对人脸口罩分割的网络模型。将原始DeepLabv3+网络中的主干特征提取网络替换为轻量级网络MobileNetV2,减少模型的参数量,提升模型分割速度;采用密集连接方式将原始空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块中的不同特征层进行特征融合,并引入CBAM注意力机制,增强模型特征表达能力。为了使模型能够准确分割出不同形状、大小和颜色的口罩,在损失函数中引入焦点损失(Focal Loss)进行模型训练,以缓解不同类别口罩在训练样本上的不均衡问题。通过在PASCLA VOC公共数据集和自建口罩数据集上进行实验。结果表明,改进后的模型相比基准模型在模型参数、分割时间以及分割精度上取得较好的平衡。 相似文献
5.
针对传统的语义分割技术对于沥青道路裂缝的检测存在检测精度低、误差大的问题,提出了一个基于改进DeepLabv3+网络的语义分割方法。该方法在编码器阶段,采用轻量级MobileNetv2取代DeepLabv3+的主干网络Xception,从而减少参数量;在解码器阶段,引入双注意力机制以进一步提高网络的分割精度;使用Dice Loss函数与原始交叉熵损失函数混合,以缓解样本中前景和背景不平衡问题。最后以道路实时检测的数据为对象进行了大量的实验,结果表明,该方法与原始DeepLabv3+相比,平均交并比(mIoU)、平均像素精度(mPA)分别提升了8.98%和17.39%。与其他主流语义分割模型相比,改进后的DeepLabv3+在沥青道路裂缝的检测上也取得了较好的效果。 相似文献
6.
红外图像智能分析是变电设备故障诊断的一种有效方法,目标设备分割是其关键技术。本文针对复杂背景下电流互感器整体分割难的问题,采用基于ResNet50的DeepLabv3+神经网络,用电流互感器的红外图像训练语义分割模型的方法,对收集到的样本采用限制对比度自适应直方图均衡化方法实现图像轮廓增强,构建样本数据集,并运用图像变换扩充样本数据集,搭建语义分割网络训练语义分割模型,实现电流互感器像素与背景像素的二分类。通过文中方法对420张电流互感器红外图像测试,结果表明,该方法的平均交并比(Mean Intersection over Union, MIoU)为87.5%,能够从测试图像中精确分割出电流互感器设备,为后续电流互感器的故障智能诊断做铺垫。 相似文献
7.
传统基于深度学习的语义分割方法使用的损失函数为交叉熵,而交叉熵并不能解决训练数据中的样本非均衡性问题。语义分割任务属于像素级分类,样本的非均衡性问题在其中体现得十分突出。文章提出了一种改进的Focal Loss作为损失函数来自动解决训练样本的非均衡性。该损失函数等同于在标准交叉熵上加上一个权重,该权重能够自动增加困难样本的交叉熵损失值,同时保持简单样本的交叉熵损失值。将Focal Loss作为DeepLabv3+的损失函数,并将DeepLabv3+的Backbone替换为ResNet-18,再使用Cityscapes数据集作为训练样本,分别使用交叉熵和Focal Loss作为损失函数来对模型进行训练。实验结果表明,改进的Focal Loss损失函数相比于交叉熵获得的语义分割精度更高,且能够有效缓解训练样本的非均衡性问题。 相似文献
8.
在图像的语义分割任务中,不同对象之间像素值存在差异,导致现有的网络模型在图像语义分割过程中丢失图像局部细节信息。针对上述问题,提出一种图像语义分割方法(DECANet)。首先,引入通道注意力网络模块,通过对所有通道的依赖关系进行建模提高网络的表达能力,选择性地学习并强化通道特征,提取有用信息,抑制无用信息。其次,利用改进的空洞空间金字塔池化(ASPP)结构,对提取到的图像卷积特征进行多尺度融合,减少图像细节信息丢失,且在权重参数不改变的情况下提取语义像素位置信息,加快模型的收敛速度。最后,DECANet在PASCAL VOC2012和Cityscapes数据集上的平均交并比分别达81.08%和76%,与现有的先进网络模型相比,检测性能更优,可以有效地捕获局部细节信息,减少图像语义像素分类错误。 相似文献
9.
10.
针对无人机获取的露天矿影像道路提取过程中道路边界信息丢失和路网提取不准确问题,提出一种基于改进DeepLabv3+网络的露天矿路网提取方法.利用Retinex算法对原始图像进行降噪预处理,得到色彩和光照均衡的数据集;并针对道路区域与背景所占像素比例相差较大的特点,使用占比加权的方法解决了网络训练中正负样本严重不平衡的问... 相似文献
11.
为解决传统DeepLabv3+算法在遥感影像变化检测上出现的边缘目标分割不精确、分类结果差的问题,提出了一种改进DeepLabv3+的高分辨率遥感影像变化检测方法。首先,基于深度分离卷积与空洞卷积构建了DeepLabv3+模型,大大降低了模型的计算量和参数量。其次,通过引入异感受野改进池化金字塔结构,同时在解码器模块中加入多尺度特征张量,对中间流结构进行残差改造,优化Xception骨干网络,并通过设置权重系数对网络通道进行权重配置优化,从而改进DeepLabv3+模型。最后,采用非生成性和生成性样本扩充方法构建数据集,并通过实验对比分析了所提方法的检测精度与泛化性能。实验结果表明,所提方法能够有效改善图形的输出分辨率和细节特征,具有良好的泛化性能和较高的检测准确率,且与其他对比方法相比,所提方法的图像检测准确率较高,整体精度指标最高可达96.4%。 相似文献
12.
针对DeepLab V3+模型的解码器部分对于特征图的多尺度连接不够充分,会使最终的语义分割图的分割精细度较低的问题,本文在DeepLab V3+模型的编码器部分增加输出一个中级语义特征图,在解码器部分对所得的特征图进行了 concat融合,进而提高了分割精度.在公开数据集上进行验证,实验结果表明改进的DeepLab ... 相似文献
13.
针对普通卷积神经网络在遥感图像分割中小目标识别度不高、分割精度低的问题,提出了一种结合特征图切分模块和注意力机制模块的遥感影像分割网络AFSM-Net。首先在编码阶段引入特征图切分模块,对每个切分的特征图进行放大,通过参数共享的方式进行特征提取;然后,将提取的特征与网络原输出图像进行融合;最后,在网络模型中引入注意力机制模块,使其更关注图像中有效的特征信息,忽略无关的背景信息,从而提高模型对小目标物体的特征提取能力。实验结果表明,所提方法的平均交并比达到86.42%,相比于DeepLabV3+模型提升了3.94个百分点。所提方法充分考虑图像分割中小目标的关注度,提升了遥感图像的分割精度。 相似文献
14.
针对传统雾气图像分割算法耗时长、分割结果存在凹陷等问题,提出一种基于DeepLabv3+的雾气图像分割算法.改进算法将DeepLabv3+原结构编码器的Backbone替换为更轻量的Mobilenetv2网络;将解码器的特征融合结构进行重新设计,同时加入注意力通道模块、边缘细化模块,通过消融实验得到分割效果最佳的雾气图... 相似文献
15.
图像语义分割技术是计算机视觉领域的核心研究内容 之一,在生产生活中有着广泛的应用需求。随着计算机性能的提升和深度学习技术的不断发展,研究者们对图像语义分割的实际效果和性能有着越来越高的研究热情。文章通过对图像语义分割方法的研究整理,梳理出现阶段图像语义分割研究的主要问题,针对这些主要问题整理了研究者们提出的解决方法和思路,介绍了语义分割领域常用的公共数据集以及算法性能评价标准,最后对各个算法进行性能的比较和评价,并对图像语义分割领域下一步的研究热点方向进行了展望。 相似文献
16.
逆合成孔径雷达(ISAR)成像技术能够对空间目标进行远距离成像,刻画目标的外形、结构和尺寸等信息。ISAR图像语义分割能够获取目标的感兴趣区域,是ISAR图像解译的重要技术支撑,具有非常重要的研究价值。由于ISAR图像表征性较差,图像中散射点的不连续和强散射点存在的旁瓣效应使得人工精准标注十分困难,基于交叉熵损失的传统深度学习语义分割方法在语义标注不精准情况下无法保证分割性能的稳健。针对这一问题,提出了一种基于生成对抗网络(GAN)的ISAR图像语义分割方法,采用对抗学习思想学习ISAR图像分布到其语义分割图像分布的映射关系,同时通过构建分割图像的局部信息和全局信息来保证语义分割的精度。基于仿真卫星目标ISAR图像数据集的实验结果证明,本文方法能够取得较好的语义分割结果,且在语义标注不够精准的情况下模型更稳健。 相似文献
17.
由于非结构化道路特征众多、结构复杂的特点,图像分割以及道路模型等经典算法无法满足非结构化道路识别在实际应用中的准确性和实时性要求.上述难点可通过基于深度学习的语义分割算法有效解决,采用轻量化的特征提取网络,改善特征提取网络中离散计算过多问题,优化对参数量和速度的控制,减少DeepLabv3+网络的冗余;针对非结构化道路... 相似文献
18.
针对DeepLabv3+模型对图像目标边缘分割不准确、不同类目标分割不一致等问题,提出一种基于类特征注意力机制融合的语义分割算法。该算法在DeepLabv3+模型编码端先设计一个类特征注意力模块增强类别间的相关性,更好地提取和处理不同类别的语义信息。然后采用多级并行的空间金字塔池化结构增强空间之间的相关性,更好地提取图像不同尺度的上下文信息。最后在解码端利用通道注意力模块的特性对多层融合特征重新校准,抑制冗余信息,加强显著特征来提高网络的表征能力。在PascalVoc2012和Cityscapes数据集上对改进模型进行了有效性和泛化性实验,平均交并比分别达到了81.34%和76.27%,使图像边缘分割更细致,类别更清晰,显著优于本文对比算法。 相似文献
19.
针对当前Deeplab v3+模型没有充分采用高分辨率的浅层特征出现的错误分割、遗漏分割等现象,提出一种融合多尺度特征的改进Deeplab v3+特征图像语义分割算法。在主干网络中,引入多尺度金字塔卷积;将空洞空间卷积池化金字塔中的标准卷积替换为深度可分离卷积,减少整体模型的参数量;最后,在解码层采用多尺度方法来捕捉获取全局背景,将背景特征通过注意力机制,再与浅层特征和空洞空间金字塔池化层结合,丰富融合后的浅层特征语义信息。实验表明,在CityScapes验证集中,所提算法具有更好的边缘分割效果,平均交并比达到了74.76%,较原有算法提升了2.20%。通过与先进算法比较,也证明所提算法应对改善错误分割、遗漏分割的有效性。 相似文献