首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Twenty-four multiparous high-producing dairy cows (40.0 ± 1.4 kg/d) were used in a factorial design to evaluate effects of 2 environments [thermoneutral (TN) and heat stress (HS)] and a dose range of dietary rumen-protected niacin (RPN; 0, 4, 8, or 12 g/d) on body temperature, sweating rate, feed intake, water intake, production parameters, and blood niacin concentrations. Temperature–humidity index values during TN never exceeded 68 (stress threshold), whereas temperature–humidity index values during HS were above 68 for 24 h/d. The HS environment increased hair coat and skin, rectal, and vaginal temperatures; respiration rate; skin and hair coat evaporative heat loss; and water intake and decreased DMI (3.5 kg/d), milk yield (4.1 kg/d), 4% fat-corrected milk (2.7 kg/d), and milk protein yield (181.7 g/d). Sweating rate increased during HS (12.7 g/m2 per h) compared with TN, but this increase was only 10% of that reported in summer-acclimated cattle. Niacin supplementation did not affect sweating rate, dry-matter intake, or milk yield in either environment. Rumen-protected niacin increased plasma and milk niacin concentrations in a linear manner. Heat stress reduced niacin concentration in whole blood (7.86 vs. 6.89 μg/mL) but not in milk. Reduced blood niacin concentration was partially corrected by dietary RPN. An interaction existed between dietary RPN and environment; dietary RPN linearly increased water intake in both environments, but the increase was greater during HS conditions. Increasing dietary RPN did not influence skin temperatures. During TN, supplementing 12 g/d of RPN increased hair coat (unshaved skin; 30.3 vs. 31.3°C at 1600 h) but not shaved skin (32.8 vs. 32.9°C at 1600 h) temperature when compared with 0 g/d at all time points, whereas the maximum temperature (18°C) of the room was lower than skin temperature. These data suggest that dietary RPN increased water intake during both TN and HS and hair coat temperature during TN; however, core body temperature was unaffected. Thus, encapsulated niacin did not improve thermotolerance of winter-acclimated lactating dairy cows exposed to moderate thermal stress in Arizona.  相似文献   

3.
Feeding rumen-protected fat (RPF) can improve energy supply for dairy cows but it affects glucose metabolism. Glucose availability is a precondition for high milk production in dairy cows. Therefore, this study investigated endocrine regulation of glucose homeostasis and hepatic gene expression related to glucose production because of RPF feeding in lactating cows. Eighteen Holstein dairy cows during second lactation were fed either a diet containing RPF (mainly C16:0 and C18:1; FD; n = 9) or a control diet based on corn starch (SD; n = 9) for 4 wk starting at 98 d in milk (DIM). Feed intake and milk yield were measured daily and milk composition once a week. Blood samples were taken weekly for analyses of plasma triglyceride, nonesterified fatty acids (NEFA), β-hydroxybutyrate, bilirubin, urea, lactate, glucose, insulin, and glucagon. At 124 DIM, an intravenous glucose tolerance test (GTT; 1 g/kg of BW0.75) was performed after a 12-h period without food. Blood samples were taken before and 7, 14, 21, and 28 min after glucose administration, and plasma concentrations of glucose, insulin, and glucagon were measured. Glucose half-life as well as areas under the concentration curve for glucose, insulin, and glucagon were calculated. After slaughter at d 28 of treatment, liver samples were taken to measure mRNA abundance of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose 6-phosphatase (G6Pase), and facilitative glucose transporter 2. Dry matter intake, but not energy and protein intake, was lower in FD than in SD. Milk yield during lactation decreased more in SD than in FD, and milk protein was lower in FD than in SD. Plasma concentrations of triglycerides and NEFA were higher in FD than in SD. Plasma insulin concentrations were lower and the glucagon:insulin ratios were higher in FD than in SD. Fasting glucose concentration before GTT was lower, and fasting glucagon concentrations tended to be higher in FD than in SD. In liver, fat content tended to be higher and G6Pase mRNA abundance was lower in FD than in SD. Lower hepatic G6Pase mRNA abundance was associated with reduced fasting plasma glucose concentrations, but the glucose-induced insulin response was not affected by RPF feeding. Hepatic G6Pase gene expression might be affected by DMI and might be involved in the regulation of glucose homeostasis in dairy cows, resulting in a lower hepatic glucose output after RPF feeding.  相似文献   

4.
The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d −17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The decline in muscle fatty acid oxidation within the first 4 wk of lactation accompanied with increased feed intake refer to greater supply of ruminally derived acetate, which as the preferred fuel of the muscle, saves long-chain fatty acids for milk fat production.  相似文献   

5.
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.  相似文献   

6.
In the transition from the pre- to postcalving state, the demands on the cow increase from support of gestation to high rates of milk production. This extra demand is met partly by increased intake but may also involve altered metabolism of major nutrients. Six multiparous Holstein cows were used to monitor changes in net fluxes of nutrients across the portal-drained viscera and liver (splanchnic tissues) between late gestation and early lactation. Blood samples were obtained simultaneously from the portal, hepatic, and subcutaneous abdominal veins and the caudal aorta 18 d before expected calving and 21 or 42 d after calving. On the day of blood sampling and the 3 d preceding sampling, cows were fed every 2 h. The precalving (1.63 Mcal of net energy for lactation/kg and 1,326 g of metabolizable protein/d) and postcalving (1.72 Mcal of net energy for lactation/kg and 2,136 g of metabolizable protein/d) diets were based on corn silage, alfalfa hay, and corn grain. Dry matter intake increased postcalving. Net splanchnic release of glucose increased postpartum because of tendencies for both increased portal absorption and net liver release. Increased removal of lactate, rather than AA, contributed to the additional hepatic gluconeogenesis. Although portal absorption of AA increased with intake at the onset of lactation, hepatic removal of total AA-N tended to decline. This clearly indicates that liver removal of AA is not linked to portal absorption. Furthermore, net liver removal relative to total liver inflow even decreased for Gly, His, Met, Phe, and Tyr. Together, these data indicate that in early lactation, metabolic priority is given to direct AA toward milk protein production rather than gluconeogenesis, in cows fed a corn-based ration.  相似文献   

7.
Heat stress of lactating cattle results in dramatic reductions in dry matter intake (DMI). As a result, energy input cannot satisfy energy needs and thus accelerates body fat mobilization. Decreasing the level of roughage neutral detergent fiber (NDF) in prepartum diets, and thereby increasing the amount of nonfiber carbohydrates, may provide an adequate supply of energy and glucose precursors to maintain and minimize the decrease in DMI while reducing mobilization of adipose tissue. The effects of 3-wk prepartum diets containing different amounts of roughage NDF on DMI, blood metabolites, and lactation performance of dairy cows were investigated under summer conditions in Thailand. Thirty cross-bred cows (87.5% Holstein × 12.5% Sahiwal) were dried off 60 d before their expected calving date and were assigned immediately to a nonlactating cow diet containing the net energy for lactation recommended by the National Research Council (2001) model. The treatment diets contained 17.4, 19.2, and 21.0% DM as roughage NDF from bana grass (Pennisetum purpureum × Pennisetum glaucum) silage. Levels of concentrate NDF were 39.8, 40.2, and 38.6% of dietary NDF, so the levels of dietary NDF were 28.9, 32.1, and 34.2% of DM. After parturition, all cows received a lactating cow diet containing 12.7% roughage NDF and 23% dietary NDF. During the entire experiment, the minimum and maximum temperature-humidity index averaged 77.7 and 86.8, respectively, indicating conditions appropriate for the induction of extreme heat stress. As parturition approached, DMI decreased steadily, resulting in a 12.9, 25, and 32.8% decrease in DMI from d −21 until calving for nonlactating cows fed prepartum diets containing 17.4, 19.2, and 21% roughage NDF, respectively. During the 3-wk prepartum period, intakes of DM and net energy for lactation and concentrations of plasma glucose and serum insulin were higher for cows fed diets containing less roughage NDF. In cows fed the 3-wk prepartum diets containing less roughage NDF, calf birth weights, milk yield, and 4% fat-corrected milk were higher, whereas periparturient concentrations of serum nonesterified fatty acids and plasma β-hydroxybutyrate were lower. There was a carryover effect of the prepartum diet on serum nonesterified fatty acids and plasma β-hydroxybutyrate during the first 7 d in milk, and therefore on milk production. These results suggest that feeding diets containing decreased amounts of roughage NDF during the 3-wk prepartum period may minimize the decrease in DMI and lipid mobilization as parturition approaches. This strategy may thus minimize the effect of hormonal factors and heat stress on periparturient cows.  相似文献   

8.
Twelve multiparous Holstein cows (145 ± 9 d in milk) were randomly assigned to receive either 0 g/d of encapsulated niacin (control diet; C) or 12 g/d of encapsulated niacin (NI) and were exposed to thermoneutral (TN; 7 d) or heat stress (HS; 7 d) conditions in climate-controlled chambers. The temperature-humidity index during TN conditions never exceeded 72, whereas HS conditions consisted of a circadian temperature range in which the temperature-humidity index exceeded 72 for 12 h/d. Measures of thermal status obtained 4 times/d included respiration rate (RR); rectal temperature; surface temperature of both shaved and unshaved areas at the rump, shoulder, and tail head; vaginal temperature; and evaporative heat loss (EVHL) of the shoulder shaved and unshaved areas. Cows fed NI had increased free plasma niacin concentrations in both the TN and HS periods (1.70 vs. 1.47 ± 0.17 μg/mL). Milk yield did not differ between dietary groups or periods. Dry matter intake was not affected by NI, but decreased (3%) for both C and NI treatments during HS. Water intake was increased during HS in both treatments (C: 40.4 vs. 57.7 ± 0.8 L/d for TN and HS, respectively; NI: 52.7 vs. 57.7 ± 0.8 L/d for TN and HS, respectively). Average EVHL for shaved and unshaved skin for C and NI treatments was higher during HS (90.1 vs. 108.1 g/m2 per hour) than TN (20.7 vs. 15.7 ± 4.9 g/m2 per hour). Between 1000 and 1600 h, mean EVHL for shaved and unshaved areas for NI fed cows was higher than for C fed cows (106.9 vs. 94.4 ± 4.9 g/m2 per hour). The NI fed cows had decreased rectal temperatures during HS compared with the C fed cows (38.17 vs. 38.34 ± 0.07°C) and had lower vaginal temperatures (38.0 vs. 38.4 ± 0.02°C). Calculated metabolic rate decreased during HS regardless of diet (50.25 and 49.70 ± 0.48 kcal/kg of body weight per day for TN and HS, respectively). Feeding NI increased free plasma NI levels, increased EVHL during peak thermal load, and was associated with a small but detectable reduction in rectal and vaginal temperatures in lactating dairy cows experiencing a mild thermal load.  相似文献   

9.
A lactation experiment was conducted to determine the influence of quebracho condensed tannin extract (CTE) on ruminal fermentation and lactational performance of dairy cows. The cows were fed a high forage (HF) or a low forage (LF) diet with a forage-to-concentrate ratio of 59:41 or 41:59 on a dry matter (DM) basis, respectively. Eight multiparous lactating Holstein cows (62 ± 8.8 d in milk) were used. The design of the experiment was a double 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments, and each period lasted 21 d (14 d of treatment adaptation and 7 d of data collection and sampling). Four dietary treatments were tested: HF without CTE, HF with CTE (HF+CTE), LF without CTE, and LF with CTE (LF+CTE). Commercial quebracho CTE was added to the HF+CTE and the LF+CTE at a rate of 3% of dietary DM. Intake of DM averaged 26.7 kg/d across treatments, and supplementing CTE decreased intakes of DM and nutrients regardless of forage level. Digestibilities of DM and nutrients were not affected by CTE supplementation. Milk yield averaged 35.3 kg/d across treatments, and yields of milk and milk component were not influenced by CTE supplementation. Negative effects of CTE supplementation on feed intake resulted in increased feed efficiency (milk yield/DM intake). Although concentration of milk urea N (MUN) decreased by supplementing CTE in the diets, efficiency of N use for milk N was not affected by CTE supplementation. Feeding the LF diet decreased ruminal pH (mean of 6.47 and 6.33 in HF and LF, respectively). However, supplementation of CTE in the diets did not influence ruminal pH. Supplementing CTE decreased total volatile fatty acid concentration regardless of level of forage. With CTE supplementation, molar proportions of acetate, propionate, and butyrate increased in the HF diet, but not in the LF diet, resulting in interactions between forage level and CTE supplementation. Concentration of ammonia-N tended to decrease with supplementation of CTE. The most remarkable finding in this study was that cows fed CTE-supplemented diets had decreased ruminal ammonia-N and MUN concentrations, indicating that less ruminal N was lost as ammonia because of decreased degradation of crude protein by rumen microorganisms in response to CTE supplementation. Therefore, supplementation of CTE in lactation dairy diets may change the route of N excretion, having less excretion into urine but more into feces, as it had no effect on N utilization efficiency for milk production.  相似文献   

10.
Nicotinic acid (niacin) can suppress lipolysis, but responses to dietary niacin have been inconsistent in cattle. Our aim was to determine if 24 g/d of encapsulated niacin (EN; providing 9.6 g/d of bioavailable nicotinic acid) alters lipid metabolism and productivity of transition cows. Beginning 21 d before expected calving, primiparous (n = 9) and multiparous (n = 13) cows (body condition score of 3.63 ± 0.08) were sequentially assigned within parity to EN (12 g provided with ration twice daily) or control through 21 d postpartum. Liver biopsies were collected on d −21, −4, 1, 7, and 21 relative to parturition. Blood samples were collected on d −21, −14, −7, −4, 1, 4, 7, 14, and 21 relative to parturition. On d 7 postpartum, a caffeine clearance test was performed to assess liver function, and on d 21 to 23 postpartum, blood samples were collected every 8 h to monitor posttreatment nonesterified fatty acid (NEFA) responses. Data were analyzed using mixed models with repeated measures over time. A treatment × time × parity effect was observed on prepartum dry matter intake (DMI), which was caused by a 4 kg/d decrease in DMI of EN-treated multiparous cows compared with control multiparous cows during the final 4 d prepartum. A significant increase in plasma nicotinamide concentration occurred in EN-treated cows on d −7 and 21 relative to parturition. Prepartum glucose concentration decreased in treated animals, with no difference in plasma insulin concentration. Treatment × time × parity effects were detected for NEFA and β-hydroxybutyrate concentrations during the postpartum period. Plasma NEFA peaked at 1,467 ± 160 μM for control animals compared with 835 ± 154 μM for EN-treated animals. After treatments ended on d 21, no evidence was found for a plasma NEFA rebound in either parity group. A treatment × parity × time interaction was detected for liver triglyceride content, indicating a tendency for less liver triglyceride in EN-treated primiparous cows, but caffeine clearance rates were not affected by treatment. No treatment effects were observed for body condition score, body weight, energy balance, or milk or milk component production. A high dose of EN can decrease postpartum plasma NEFA concentration, but may also decrease prepartum DMI.  相似文献   

11.
During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n = 25) or a restriction group (RES; 70% of energy requirements; n = 25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.  相似文献   

12.
Data from 1,010 lactating lactating, predominately component-fed Holstein cattle from 25 predominately tie-stall dairy farms in southwest Ontario were used to identify objective thresholds for defining hyperketonemia in lactating dairy cattle based on negative impacts on cow health, milk production, or both. Serum samples obtained during wk 1 and 2 postpartum and analyzed for β-hydroxybutyrate (BHBA) concentrations that were used in analysis. Data were time-ordered so that the serum samples were obtained at least 1 d before the disease or milk recording events. Serum BHBA cutpoints were constructed at 200 μmol/L intervals between 600 and 2,000 μmol/L. Critical cutpoints for the health analysis were determined based on the threshold having the greatest sum of sensitivity and specificity for predicting the disease occurrence. For the production outcomes, models for first test day milk yield, milk fat, and milk protein percentage were constructed including covariates of parity, precalving body condition score, season of calving, test day linear score, and the random effect of herd. Each cutpoint was tested in these models to determine the threshold with the greatest impact and least risk of a type 1 error. Serum BHBA concentrations at or above 1,200 μmol/L in the first week following calving were associated with increased risks of subsequent displaced abomasum [odds ratio (OR) = 2.60] and metritis (OR = 3.35), whereas the critical threshold of BHBA in wk 2 postpartum on the risk of abomasal displacement was ≥1,800 μmol/L (OR = 6.22). The best threshold for predicting subsequent risk of clinical ketosis from serum obtained during wk 1 and wk 2 postpartum was 1,400 μmol/L of BHBA (OR = 4.25 and 5.98, respectively). There was no association between clinical mastitis and elevated serum BHBA in wk 1 or 2 postpartum, and there was no association between wk 2 BHBA and risk of metritis. Greater serum BHBA measured during the first and second week postcalving were associated with less milk yield, greater milk fat percentage, and less milk protein percentage on the first Dairy Herd Improvement test day of lactation. Impacts on first Dairy Herd Improvement test milk yield began at BHBA ≥1,200 μmol/L for wk 1 samples and ≥1,400 μmol/L for wk 2 samples. The greatest impact on yield occurred at 1,400 μmol/L (−1.88 kg/d) and 2,000 μmol/L (−3.3 kg/d) for sera from the first and second week postcalving, respectively. Hyperketonemia can be defined at 1,400 μmol/L of BHBA and in the first 2 wk postpartum increases disease risk and results in substantial loss of milk yield in early lactation.  相似文献   

13.
Diets offered to lactating dairy cows in the pasture-based dairy systems in southeastern Australia can vary in their dietary cation-anion difference (DCAD) from 0 to +76 mEq/100 g. The effects of such a range of DCAD on the health and production of cows, on a predominantly pasture-based diet, were examined in an indoor feeding experiment. Four groups of five cows were offered a diet of 5 kg of barley and ad libitum pasture, which is a diet representative of what is offered to cows in early lactation in the region. The cows were supplemented twice daily, with varying levels of salt combinations to alter the DCAD, which ranged from +21 to +127 mEq/100 g. Although a reduction in DCAD to +21 mEq/100 g caused a nonrespiratory systemic acidosis, there was a threshold value, above which blood and urine pH did not appear affected, although the strong ion difference of blood and urine and the blood bicarbonate concentration increased linearly (P < 0.05, 0.001, and 0.01, respectively). A DCAD above +21 mEq/100 g linearly reduced dry matter intake (P < 0.1), average daily bodyweight gain (P < 0.05), and milk protein yield (P < 0.05) but did not have a significant effect on the concentration of fat, protein, or lactose in milk. Although data were consistent with a tendency for milk yield to decrease as dietary cation-anion differences increased, this trend was not statistically significant. Urine hydroxyproline to creatinine ratio increased (P < 0.001) as dietary cation-anion difference increased, possibly suggesting an increased rate of uterine involution. It is concluded that a range in the dietary cation-anion difference, above +52 mEq/100 g, may have deleterious effects on dry matter intake and milk production.  相似文献   

14.
The present experiment was undertaken to determine the interactions between dietary supplements of folic acid and rumen-protected methionine on lactational performance and on indicators of folate metabolism during one lactation. Fifty-four multiparous Holstein cows were assigned to 9 blocks of 6 cows each according to their previous milk production. Within each block, 3 cows were fed a diet calculated to supply methionine as 1.75% metabolizable protein, equivalent to 70% of methionine requirement, whereas the 3 other cows were fed the same diet supplemented with 18 g of a rumen-protected methionine supplement. Within each diet, the cows received 0, 3, or 6 mg/d of folic acid per kg of body weight. Rumen-protected methionine increased milk total solid concentration but not yield. Supplementary folic acid increased crude protein and casein concentrations in milk of cows fed no supplementary methionine and the effect increased as lactation progressed; it also decreased milk lactose concentration. Folic acid supplements had the opposite effects on milk crude protein, casein, and lactose concentrations in cows fed rumen-protected methionine. Milk and milk component yields and dry matter intake were unchanged. Folic acid supplementation increased serum folates and this response was greater at 8 wk of lactation. It decreased serum cysteine in cows fed rumen-protected methionine, whereas it had no effect in cows fed no supplementary methionine. The highest serum concentrations of cysteine but the lowest of vitamin B(12) were observed at 8 wk of lactation. Serum clearance of folic acid following an i.v. injection of folic acid was slower at 8 wk of lactation. During this period, the high concentrations of serum folates and cysteine, the low serum concentrations of vitamin B(12) and methionine, and the slow serum clearance of folates strongly suggest that the vitamin B(12) supply was inadequate and interfered with folate use. It could explain the limited lactational response to supplementary folic acid observed in the present experiment.  相似文献   

15.
Effects of dietary fat supplementation prepartum on liver lipids and metabolism in dairy cows are contradictory. Thus, we examined in 18 German Holstein cows (half-sib; first lactation 305-d milk yield >9,000 kg) whether dietary fat:carbohydrate ratio during the last trimester of gestation affects lipid metabolism and milk yield. The diets were formulated to be isoenergetic and isonitrogenous but differed in rumen-protected fat (FD; 28 and 46.5 g/kg of dry matter during far-off and close-up dry period; mainly C16:0 and C18:1) and starch concentration [carbohydrate diet (CD); 2.3 times as much starch as FD]. Diets were given ad libitum starting 12 wk before expected parturition. After parturition all cows were fed a single lactation diet ad libitum for 14 wk. With the FD treatment, dry matter intake was depressed prepartum, milk yield during first 4 wk of lactation was lower (36.9 vs. 41.0 kg/d), and postpartum energy balance during this period was more negative. During the first 4 wk, cows in the FD group had lower lactose percentage and yield but higher milk fat, whereas milk protein and fat yield as well as energy-corrected milk did not differ. Between wk 5 and 14, milk fat and milk protein percentage was lower in CD than in FD. Milk fat C14:0 was lower and C16:1 was higher in the FD group. For FD cows, plasma triacylglycerol, nonesterified fatty acids, and cholesterol concentrations were higher prepartum, whereas plasma β-hydroxybutyrate and glucose concentrations were lower. During the first 10 d after parturition, plasma triacylglycerol concentration was higher in FD, and prepartum plasma glucose and cholesterol differences persisted during the first 14 wk of lactation. Irrespective of prepartum nutrient composition, concentrations of plasma leptin and subcutaneous fat leptin mRNA decreased between −10 d to +10 d relative to parturition, and liver lipids and glycogen reached maximum and minimal values, respectively, 10 d after parturition. Acetyl-coenzyme A carboxylase α mRNA abundance in subcutaneous fat decreased between −10 d to +1 d relative to parturition by 97%, whereas it was generally much lower in the liver and remained at a low level until wk 14 of lactation. In conclusion, feeding a diet containing rumen-protected fat during late lactation and dry period until calving negatively affected dry matter intake, energy balance, and milk yield during subsequent lactation, did not change acetyl-coenzyme A carboxylase α mRNA abundance in subcutaneous fat, and was not beneficial for liver lipid accumulation.  相似文献   

16.
Short-term studies (< 5 d) involving abomasal infusion of a mixture of CLA isomers or pure trans-10, cis-12 CLA have demonstrated that supplements of conjugated linoleic acids (CLA) reduce milk fat synthesis during established lactation in dairy cows. Our objective was to assess longer term effects of supplementation during established lactation using a dietary supplement of rumen-protected CLA. Thirty Holstein cows were blocked by parity and received a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of palm oil fatty acids plus Ca-salts of CLA (CLA treatment). Supplements provided about 90 g/d of fatty acids and were topdressed on the TMR. The CLA supplement provided 30.4 g/d of CLA in which the predominant isomers were: trans-8, cis-10 (9.2%), cis-9, trans-11 (25.1%), trans-10, cis-12 (28.9%), and cis-11, trans-13 (16.1%). All cows were pregnant; treatments were initiated on d 79 of pregnancy (approximately 200 d prepartum) and continued for 140 d until dry off. Twenty-three cows completed the study; those receiving CLA supplement had a lower milk fat test (2.90 versus 3.80%) and a 23% reduction in milk fat yield (927 versus 1201 g/d). Intake of DM, milk yield, and the yield and content of true protein and lactose in milk were unaffected by treatment. Milk fat analysis indicated that the CLA supplement reduced the secretion of fatty acids of all chain lengths. However, effects were proportionally greater on short and medium chain fatty acids, thereby causing a shift in the milk fatty acid composition to a greater content of longer-chain fatty acids. Changes in body weight gain, body condition score, and net energy balance were not significant and imply no differences in cows fed the CLA supplement in replenishment of body reserves in late lactation. Likewise, maintenance of pregnancy, gestation length, and calf birth weight were unaffected by treatment. Overall, feeding a dietary supplement of rumen-protected CLA to pregnant cows over the last 140 d of the lactation cycle resulted in a marked reduction in milk fat content and yield, and a shift in milk fatty acid composition, but other milk components, DMI, maintenance of pregnancy, and cow well-being were unaffected.  相似文献   

17.
Plant essential plant oils (EO) are volatile aromatic compounds with antimicrobial activity that can alter ruminal fermentation when used as dietary supplements. A feeding trial was conducted to determine the effects of dietary supplementation of periparturient and early lactation dairy cows with a specific mixture of EO. Forty multiparous Holstein cows were randomly assigned to either control (C) or EO-supplemented (1.2 g/cow per day) total mixed rations (TMR). Feeding of treatment diets commenced 3 wk before the expected calving date and continued through 15 wk in lactation. The prepartum TMR contained 70% forage [70% corn silage, 15% alfalfa silage, and 15% wheat straw; dry matter (DM) basis]. The lactation TMR contained 50% forage (60% corn silage, 33% alfalfa silage, 7% alfalfa hay; DM basis). Prepartum and lactation TMR were formulated to contain 12 and 17% CP (DM basis), respectively. There were no differences between treatments for prepartum DM intake (DMI), but DMI was 1.8 kg/d less for EO than C on average across the 15-wk lactation trial. Plasma concentrations of glucose, nonesterified fatty acids, β-hydroxybutyrate, and urea-N on samples collected −21, −14, −7, −1, 1, 8, 15, 22, and 29 d relative to calving were unaffected by treatment. There were no differences between treatments for actual or fat-corrected milk yields on average across the 15-wk lactation trial. Milk protein content was 0.15% units less for EO than C. Feed efficiency (kg of milk per kg of DMI) tended to be greater for EO than C on average and was greater during wk 8 to 14 of lactation. Prepartum and lactation body weight and condition score measurements were unaffected by treatment. There was no benefit to EO in prepartum dairy cows. Dietary supplementation with EO reduced DMI in early lactation dairy cows with no effect on milk yield.  相似文献   

18.
《Journal of dairy science》2023,106(4):2948-2962
Energy and nutrient deficiency in dairy cows in early lactation is considered to contribute to their increased susceptibility to mastitis. We have tested the hypothesis that feeding diets with high contents of either nitrogenic, glucogenic, or lipogenic components in early lactation affects both the endocrine and metabolic status, as well as the mammary immune competence. After calving, cows were fed increasing amounts of concentrate up to 10 kg/d rich in crude protein (nitrogenic, n = 10), glucogenic precursors (glucogenic, n = 11), or lipids (lipogenic, n = 11). In wk 3, one udder quarter was challenged with lipopolysaccharide (LPS) from Escherichia coli. Blood and milk were sampled on the day before LPS challenge (d −1), and on d 0, 1, 2, 3, and 9 after LPS challenge. On the day of LPS challenge additional samples were taken hourly for quarter milk and every 3 h for blood. Urea concentrations were higher in plasma and milk of cows fed the nitrogenic diet. However, plasma concentrations of glucose, cholesterol, triglycerides, β-hydroxybutyrate, nonesterified fatty acids, as well as insulin, glucagon, and insulin-like growth factor-1 were not affected by the different diets. The mammary immune challenge induced a substantial increase of somatic cell count (SCC) in the treated quarter, and a transient decrease of total milk yield and white blood cells similar in all diet groups for one day. The absolute phagocytosis of blood leukocytes was decreased; however, the phagocytosis per cell was increased in glucogenic-fed cows at 6 h after LPS challenge. During mammary inflammation an insulin resistance, shown by increased plasma glucose, insulin, and glucagon, developed similarly in all diet groups. β-hydroxybutyrate and nonesterified fatty acids were decreased at 1 d after LPS challenge in glucogenic-fed cows only. Cholesterol did not change, and triglycerides only decreased significantly in lipogenic-fed cows 6 h after challenge. On d 9 after LPS challenge, SCC and milk yield and metabolic factors were recovered in all groups. In conclusion, the endocrine and metabolic situation, and the immune response to intramammary LPS of dairy cows during early lactation was not substantially influenced by the elevated supply of nitrogenic, glucogenic, or lipogenic components due to the provided feed in this study.  相似文献   

19.
《Journal of dairy science》2023,106(6):4198-4213
Objectives of this experiment were to study the effect of infusing utero-pathogenic bacteria to induce endometrial inflammation on productive performance in early lactation and subsequent reproduction. Although endometritis is associated with perturbed reproduction, numerous factors may contribute to the observed association. It was hypothesized that induced endometrial inflammation, resulting in localized and systemic inflammatory responses, compromises production and reproduction. Holstein cows without clinical disease and with less than 18% polymorphonuclear leukocytes (PMN) in endometrial cytology on d 31 ± 3 postpartum had their estrous cycle synchronized. Cows were blocked by parity and genomic breeding value for cow conception rate and, within block, assigned randomly to remain as untreated controls (CON; n = 37) or to receive an intrauterine infusion of 5.19 × 108 cfu Escherichia coli and 4.34 × 108 cfu Trueperella pyogenes during the luteal phase to induce endometrial inflammation (INF; n = 48). Endometrial cytology was taken on d 2 and 7 after treatment to evaluate the proportion of PMN. Rectal temperature, dry matter intake, and yields of milk and components were measured in the first 7 d after treatment. Blood serum was analyzed for concentration of haptoglobin. Leukocytes were isolated from blood on d 2 and 7 after treatment and on d 19 after artificial insemination (AI) and mRNA was quantified for a select group of genes. Cows received AI and reproduction was followed for 300 d postpartum. Bacterial infusion induced endometrial inflammation with increased proportions of PMN in the endometrial cytology on d 2 (4.4 ± 0.7 vs. 26.3 ± 2.8%) and 7 (10.9 ± 1.7 vs. 17.4 ± 2.1%) after treatment, resulting in increased mean prevalence of subclinical endometritis (>10% PMN; 23.3 ± 6.3 vs. 80.9 ± 5.1%). Rectal temperature did not differ between CON and INF, but the concentration of haptoglobin in serum tended to increase in INF compared with CON (113 ± 14 vs. 150 ± 16 µg/mL). Induced endometrial inflammation reduced yields of milk (44.9 ± 0.8 vs. 41.6 ± 0.8 kg/d), protein (1.19 ± 0.03 vs. 1.12 ± 0.03 kg/d), and lactose (2.17 ± 0.04 vs. 2.03 ± 0.04 kg/d) and tended to reduce dry matter intake (20.7 ± 0.5 vs. 19.4 ± 0.6 kg/d) in the first 7 d after treatment. Indeed, the reduction in milk yield lasted 4 wk. However, treatment did not affect yields of energy-corrected milk or fat because treatment with INF increased the concentration of fat in milk (3.54 ± 0.10 vs. 3.84 ± 0.10%). Induced endometrial inflammation reduced pregnancy per AI at all inseminations (33.4 ± 5.1 vs. 21.6 ± 3.7%) and the hazard of pregnancy (0.61; 95% CI = 0.36–1.04), which extended the median days open by 24 d. Blood leukocytes from INF cows had increased mRNA expression of the pro-inflammatory gene IL1B on d 2 and 7 after treatment, but reduced expression of the IFN-stimulated genes ISG15 and MX2 on d 19 after AI. Induced endometrial inflammation depressed production and caused long-term negative effects on reproduction in lactating dairy cows.  相似文献   

20.
The objective of the present study was to investigate the potential of the urea dilution technique, coupled with live animal measures to predict the body components of dairy cattle. The study involved 104 lactating Holstein-Friesian cows offered grass silage-based diets. Urea space volume (USV) was calculated from 2 collection periods of blood samples following infusion of urea at 12 (USV12, kg) and 30 (USV30, kg) min after infusion, and then as a proportion of live weight (LW) or empty body weight (EBW). All cows were slaughtered within 2 d of the USV trials. Large ranges existed in EBW and empty body concentrations of water, crude protein (CP), lipid, ash, and gross energy (GE). The USV12 and USV30 were both positively related to LW, EBW, and empty body component weights. The r2 values for USV12 were greater than USV30. The r2 values in the relationships of EBW and empty body composition with USV, however, were smaller than those with LW. Nevertheless, the relationships were improved when both USV and LW were used as predictors, rather than using either alone. Adding milk yield and body condition score as supporting predictors to prediction equations using USV and LW data for EBW, lipid, and GE contents further improved the relationships (r2 = 0.93, 0.66, and 0.77, respectively). Internal evaluation of one-third of the present data using equations developed from two-thirds of the present data indicated that using USV, live weight, and other live animal variables as predictors, rather than using USV alone, considerably improved the prediction accuracy. It was concluded that USV can be used to predict body composition, but the relationships with USV were poorer than those with LW. The USV can only be used as a supporting variable to live weight for prediction of body components in lactating dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号