首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The addition of fat and calcium sulfate to diets fed to ruminants has resulted in a reduction in methane production, but the effects on energy balance have not been studied. A study using indirect calorimetry and 16 multiparous (8 Holstein and 8 Jersey; 78 ± 15 d in milk; mean ± standard deviation) lactating dairy cows was conducted to determine how mitigating methane production by adding corn oil or calcium sulfate to diets containing reduced-fat distillers grains affects energy and nitrogen balance. A replicated 4 × 4 Latin square design with 35-d periods (28 d of adaption and 4 d of collections) was used to compare 4 different dietary treatments. Treatments were composed of a control (CON) diet, which did not contain reduced-fat distillers grain and solubles (DDGS), and treatment diets containing 20% (dry matter basis) DDGS (DG), 20% DDGS with 1.38% (dry matter basis) added corn oil (CO), and 20% DDGS with 0.93% (dry matter basis) added calcium sulfate (CaS). Compared with CON, dry matter intake was not affected by treatment, averaging 29.6 ± 0.67 kg/d. Milk production was increased for diets containing DDGS compared with CON (26.3 vs. 27.8 ± 0.47 kg/d for CON vs. DDGS, respectively), likely supported by increased energy intake. Compared with CON, energy-corrected milk was greater in DG and CO (30.1 vs. 31.4, 31.7, and 31.0 ± 0.67 kg/d for CON, DG, CO, and CaS, respectively). Compared with CON, the addition of calcium sulfate and corn oil to diets containing DDGS reduced methane production per kg of dry matter intake (22.3, 19.9, and 19.6 ± 0.75 L/kg per d for CON, CO, and CaS, respectively). Similarly, methane production per kilogram of energy-corrected milk was reduced with the addition of calcium sulfate and corn oil to diets containing DDGS (14.2, 12.5, and 12.4 ± 0.50 L/kg per d for CON, CO, and CaS, respectively). Compared with CON and CaS, the intake of digestible energy was greater for DG and CO treatments (57.7, 62.1, 62.0, and 59.0 ± 1.38 Mcal/d for CON, DG, CO, and CaS, respectively). Intake of metabolizable energy was greater in all treatments containing DDGS compared with CON (50.5 vs. 54.0 ± 1.08 Mcal/d for CON vs. DDGS, respectively). Net balance (milk plus tissue energy) per unit of dry matter was greater in CO (containing DDGS and oil) than CON (1.55 vs. 1.35 ± 0.06 Mcal/kg for CO vs. CON, respectively). Tissue energy was greater in DG and CO compared with CON (6.08, 7.04, and 3.16 ± 0.99 Mcal/d for DG, CO, and CON, respectively. Results of this study suggest that the addition of oil and calcium sulfate to diets containing DDGS may be a viable option to reduce methane production and in the case of oil also improve net energy balance in lactating dairy cows.  相似文献   

2.
《Journal of dairy science》2021,104(9):9752-9768
Our primary objective was to perform a meta-analysis and meta-regression to evaluate the effects of diets supplemented with calcium salts of palm fatty acids (CSPF) compared with nonfat supplemented control diets (CON) on nutrient digestibility and production responses of lactating dairy cows. Our secondary objective was to perform a meta-analysis to evaluate whether experimental design affects production responses to supplemental CSPF. The data set was formed from 33 peer-reviewed publications with CSPF supplemented at ≤3% diet dry matter. We analyzed the interaction between experimental design (continuous vs. change-over) and treatments (CON vs. CSPF) to evaluate whether experimental design affects responses to CSPF (Meta.1). Regardless of experimental design, we evaluated the effects of CSPF compared with CON on nutrient digestibility and production responses of lactating dairy cows by meta-analysis (Meta.2) and meta-regression (Meta.3) approaches. In Meta.1, there was no interaction between treatments and experimental design for any variable. In Meta.2, compared with CON, CSPF reduced dry matter intake [DMI, 0.56 ± 0.21 kg/d (±SE)] and milk protein content (0.05 ± 0.02 g/100 g), increased neutral detergent fiber (NDF) digestibility (1.60 ± 0.57 percentage units), the yields of milk (1.53 ± 0.56 kg/d), milk fat (0.04 ± 0.02 kg/d), and 3.5% fat corrected milk (FCM, 1.28 ± 0.60 kg/d), and improved feed efficiency [energy corrected milk (ECM)/DMI, 0.08 kg/kg ± 0.03]. There was no effect of treatment for milk protein yield, milk fat content, body weight, body weight change, or body condition score. Compared with CON, CSPF reduced the yield of de novo milk fatty acids (FA) and increased the yields of mixed and preformed milk FA. In Meta.3, we observed that each 1-percentage-unit increase of CSPF in diet dry matter reduced DMI, increased NDF digestibility, tended to increase FA digestibility, increased the yields of milk, milk fat, and 3.5% FCM, reduced the content of milk protein, reduced the yield of de novo milk FA, and increased the yields of mixed and preformed milk FA. In conclusion, our results indicate no reason for the restrictive use of change-over designs in CSPF supplementation studies or meta-analysis. Feeding CSPF increased NDF digestibility, tended to increase FA digestibility, and increased the yields of milk, milk fat, and 3.5% FCM. Additionally, CSPF increased milk fat yield by increasing the yields of mixed and preformed milk FA.  相似文献   

3.
Although the inclusion of fat has reduced methane production in ruminants, relatively little research has been conducted comparing the effects of source and profile of fatty acids on methane production in lactating dairy cows. A study using 8 multiparous (325 ± 17 DIM; mean ± SD) lactating Jersey cows was conducted to determine effects of feeding canola meal and lard versus extruded byproduct containing flaxseed as a high-C18:3 fat source on methane production and diet digestibility in late-lactation dairy cows. A crossover design with 32-d periods (28-d adaptation and 4-d collections) was used to compare 2 different fat sources. Diets contained approximately 50% forage mixture of corn silage, alfalfa hay, and brome hay; the concentrate mixture changed between diets to include either (1) a conventional diet of corn, soybean meal, and canola meal with lard (control) or (2) a conventional diet of corn and soybean meal with an extruded byproduct containing flaxseed (EXF) as the fat source. Diets were balanced to decrease corn, lard, and canola meal and replace them with soybean mean and EXF to increase the concentration of C18:3 (0.14 vs. 1.20% of DM). Methane production was measured using headbox-style indirect calorimeters. Cattle were restricted to 95% ad libitum feed intake during collections. Milk production (17.4 ± 1.04 kg/d) and dry matter intake (15.4 ± 0.71 kg/d) were similar among treatments. Milk fat (5.88 ± 0.25%) and protein (4.08 ± 0.14%) were not affected by treatment. For methane production, no difference was observed for total production (352.0 vs. 349.8 ± 16.43 L/d for control vs. EXF, respectively). Methane production per unit of dry matter intake was not affected and averaged 23.1 ± 0.57 L/kg. Similarly, methane production per unit of energy-corrected milk was not affected by fat source and averaged 15.5 ± 0.68 L/kg. Heat production was similar, averaging 21.1 ± 1.02 Mcal/d. Digestibility of organic matter, neutral detergent fiber, and crude protein was not affected by diet and averaged 69.9, 53.6, and 73.3%, respectively. Results indicated that increasing C18:3 may not affect methane production or digestibility of the diet in lactating dairy cows.  相似文献   

4.
The objective of the study was to investigate the effects of dietary forage and distillers dried grains with solubles (DDGS) concentration on the performance of lactating dairy cows. Twelve Holstein cows were blocked by parity and milk production and assigned to replicated 4 × 4 Latin squares with a 2 × 2 factorial arrangement of treatments. Diets were formulated to contain low forage [LF; 17% forage neutral detergent fiber (NDF)] or high forage (HF; 24.5% forage NDF) and DDGS at 0 or 18% of diet dry matter. The forage portion of the diet consisted of 80% corn silage and 20% alfalfa hay (dry matter basis). A portion of the ground corn and all of the expeller soybean meal and extruded soybeans from 0% DDGS diets were replaced with DDGS to formulate 18% DDGS diets. Overall, we found no interactions of forage × DDGS concentrations for any of the production measures. We observed no effect of diet on dry matter intake. Milk yield was greater when cows were fed LF diets compared with HF diets (43.3 vs. 41.5 kg/d). Milk fat concentration (3.03 vs. 3.38%) was lower for cows fed LF diets compared with HF diets, whereas protein concentration (3.11 vs. 2.98%) and yield (1.34 vs. 1.24 kg/d) were greater for cows fed LF diets compared with HF diets. Yields of fat, total solids, energy-corrected milk, and feed efficiency were not affected by diets. Cows partitioned equally for milk, maintenance, and body reserves. Replacing starch from ground corn and protein from soybean feeds with DDGS at either 17 or 24.5% of forage NDF concentration in the diet was cost-effective and did not affect the production performance of lactating dairy cows.  相似文献   

5.
The objective of this study was to evaluate the use of a live-yeast product when feeding relatively high-forage diets to high-producing cows in mid lactation. Eight primiparous [607 ± 43 kg of body weight (BW) and 130 ± 16 d in milk (DIM) at the beginning of the experiment] and 16 multiparous (706 ± 63 kg of BW and 137 ± 22 DIM at the beginning of the experiment) Holstein cows were blocked by parity and DIM, and randomly assigned to 1 of 2 diets (control vs. yeast) for a 12-wk period according to a randomized complete block design. The formulated diets contained 50.4% corn silage, 10.4% alfalfa hay, and 39.2% concentrate. The yeast diet was formulated to provide approximately 5.4 × 1011 cfu/d of Saccharomyces cerevisiae (BeneSacc; Global Nutritech Biotechnology LLC, Richmond, VA). Total-tract nutrient digestibility was estimated using 240-h undigested neutral detergent fiber (NDF) as an internal marker. Supplementing live yeast to lactating dairy cows did not affect dry matter intake (25.0 kg/d), milk yield (38.6 kg/d), milk fat concentration (4.78%), milk fat yield (1.83 kg/d), milk protein concentration (3.09%), milk protein yield (1.18 kg/d), milk lactose concentration (4.79%), milk lactose yield (1.84 kg/d), BW gain (?0.05 kg/d), or body condition score gain (0.16 units). The digestibility of dry matter was greater for the control treatment than for the yeast treatment (69.3 and 67.1%, respectively), but the digestibilities of crude protein (61.5%), NDF (40.5%), and starch (98.6%) were not affected by treatment. In conclusion, supplementation of live yeast did not affect production performance or nutrient digestibility of high-producing cows in mid lactation. The reasons for the lack of effect are not clear, but an evaluation of interactions between yeast and rumen buffer supplementation is warranted.  相似文献   

6.
《Journal of dairy science》2019,102(7):6174-6179
We aimed to evaluate the use of a live-yeast product as a means to attenuate plausible nutritional disturbances when feeding relatively low-forage diets containing rapidly fermentable carbohydrates (i.e., wheat) to high-producing cows in early to mid lactation. Eight primiparous [mean ± SD; 569 ± 35 kg of body weight (BW) and 80 ± 29 d in milk (DIM) at the beginning of the experiment] and 16 multiparous (665 ± 67 kg of BW and 64 ± 10 DIM at the beginning of the experiment) Holstein cows were blocked by parity and DIM, and randomly assigned to 1 of 2 diets (control vs. yeast) for a 12-wk-long period according to randomized complete block design. The formulated diets contained 36.7% corn silage, 8.3% alfalfa hay, and 55% concentrate. The yeast diet was formulated to provide approximately 5.4 × 1011 cfu/d of Saccharomyces cerevisiae (BeneSacc; Global Nutritech Biotechnology LLC, Richmond, VA). Total-tract nutrient digestibility was estimated using 240-h undigested neutral detergent fiber (NDF) as an internal marker. Dry matter intake, milk yield, and milk component concentrations and yields were analyzed using repeated measures. The statistical model for these variables included the effects of block, treatment, the block by treatment interaction, week, the treatment by week interaction, and the random residual error. The statistical model for analyzing BW gain, body condition score gain, and dry matter and nutrient digestibilities included the effects of block, treatment, and the random residual error. Supplementing live yeast to lactating dairy cows did not affect dry matter intake (26.0 kg/d), milk yield (48.1 kg/d), milk fat concentration (3.61%), milk fat yield (1.72 kg/d), milk protein concentration (2.96%), milk protein yield (1.43 kg/d), milk lactose concentration (4.84%), milk lactose yield (2.35 kg/d), milk urea nitrogen (7.99 mg/dL), body weight gain (0.62 kg/d), and body condition score gain (0.02 units; all averages of the 2 treatments). The digestibilities of dry matter (70.2%), crude protein (71.4%), NDF (36.4%), and starch (99.8%) were not affected by treatments. In conclusion, the supplementation of the live yeast did not affect production performance and nutrient digestibility of high-producing dairy cows. A potential interaction between live-yeast supplementation and NDF passage rate, which may have hindered the beneficial effects of live-yeast supplementation on production performance and nutrient utilization, deserves further research.  相似文献   

7.
Groundwater depletion is one of the most pressing issues facing the dairy industry in arid regions. One strategy to improve the industry's drought resilience involves feeding drought-tolerant forage crops in place of traditional forage crops such as alfalfa and corn silage. The objective of this study was to assess the productivity of lactating dairy cows fed diets with teff hay (Eragrostis tef) as the sole forage. Teff is a warm-season annual grass native to Ethiopia that is well adapted to drought conditions. Nine multiparous Holstein cows (185 ± 31 d in milk; mean ± standard deviation) were randomly assigned to 1 of 3 diets in a 3 × 3 Latin square design with 18-d periods (14 d acclimation and 4 d sampling). Diets were either control, where dietary forage consisted of a combination of corn silage, alfalfa hay, and native grass hay, or 1 of 2 teff diets (teff-A and teff-B), where teff hay [13.97 ± 0.32% crude protein, dry matter (DM) basis] was the sole forage. All 3 diets were formulated for similar DM, crude protein, and nonfiber carbohydrate concentrations. Control and teff-A were matched for concentrations of neutral detergent fiber (NDF) from forage (18.2 ± 0.15% of DM), and teff-B included slightly less, providing 16.6% NDF from forage. Dry matter intake, milk and component production, body weight, body condition score, as well as DM and NDF digestibility were monitored and assessed using mixed model analysis, with significance declared at P < 0.05. Treatment had no effect on dry matter intake (28.1 ± 0.75 kg/d). Similarly, treatment had no effect on milk production (40.7 ± 1.8 kg/d). Concentrations of milk fat (3.90 ± 0.16%) and lactose (4.68 ± 0.07%) were also unaffected by treatment. Teff-A and teff-B increased milk protein concentration compared with the control (3.07 vs. 3.16 ± 0.09%). Treatment had no effect on energy-corrected milk yield (43.4 ± 1.3 kg/d), body weight, or body condition score change. Additionally, treatment had no effect on total-tract DM or NDF digestibility. Results from this study indicate that teff hay has potential to replace alfalfa and corn silage in the diets of lactating dairy cattle without loss of productivity.  相似文献   

8.
《Journal of dairy science》2023,106(9):6041-6059
This study evaluated the physical effectiveness of whole-plant corn silage (CS) particles stratified with the Penn State Particle Separator, composed of 19- and 8-mm-diameter sieves and a pan, for lactating dairy cows. Eight Holstein cows (27.6 ± 2.8 kg/d of milk, 611 ± 74 kg body weight; 152 ± 83 d in milk) were assigned to two 4 × 4 Latin squares (22-d periods, 16-d adaptation), where one square was formed with rumen-cannulated cows. Three CS particle fractions were manually isolated using the 8- and 19-mm diameter sieves and re-ensiled in 200-L drums. The 4 experimental diets were (% dry matter): (1) CON (control): 17% forage neutral detergent fiber (NDF) from CS (basal roughage), 31.5% starch, and 31.9% NDF; (2) PSPan: 17% forage NDF from CS + 9% NDF from CS particles <8 mm, 25.9% starch, and 37.9% NDF; (3) PS8: 17% forage NDF from CS + 9% NDF from CS particles 8 to 19 mm, 25.5% starch, and 38.3% NDF; and (4) PS19: 17% forage NDF from CS + 9% NDF from CS particles >19 mm, 24.9% starch, and 38.8% NDF. Cows fed PS8 had greater dry matter intake and energy-corrected milk yield (22.4 and 26.9 kg/d, respectively) than cows fed CON (20.8 and 24.7 kg/d) and PS19 (21.2 and 24.8 kg/d), but no difference was detected between PSPan (21.6 and 25.8 kg/d) and other treatments. Milk fat concentration was greater for PS8 than CON, with intermediate values for PSPan and PS19. Milk fat yield was greater for cows fed PS8 than CON and PS19, and cows fed PSPan secreted more fat than CON cows but were not different from cows fed the other 2 diets. Cows fed CON had a lower meal frequency than cows fed PSPan, shorter meal and rumination times than PS8, and greater meal size and lower rates of rumination and chewing than the other 3 diets. Total chewing per unit of NDF was higher for PS8 than PSPan, although neither treatment differed from CON or PS19. Cows fed PS19 had higher refusal of feed particles >19 mm than cows fed CON and PSPan. The refusal of dietary NDF and undigested NDF in favor of starch were all greater for PS19 than on the other treatments. Cows fed PS19 had a greater proportion of the swallowed bolus and rumen digesta with particles >19 mm than the other 3 diets. Cows fed CON had the lowest ruminal pH and greatest lactate concentration relative to the other 3 diets. Plasma lipopolysaccharide was higher for cows fed CON and PSPan than for cows fed PS8 and PS19, and serum d-lactate tended to be lower on PSPan than for CON and PS8. In summary, the inclusion of CS fractions in a low-forage fiber diet (CON) reduced signs of ruminal acidosis. Compared with CS NDF <8 and >19 mm, CS NDF with 8- to 19-mm length promoted better rumen health and performance of dairy cows. These results highlight the importance of adjusting CS harvest and formulating dairy diets based on the proportion of particles retained between the 8- and 19-mm sieves.  相似文献   

9.
《Journal of dairy science》2019,102(12):10903-10915
This study evaluated the effects of feeding diets that were formulated to contain similar proportions of undigested neutral detergent fiber (uNDF) from forage, with wheat straw (WS) substituted for corn silage (CS), alfalfa hay (AH), or both. The diets were fed to lactating dairy cows and intake, digestibility, blood metabolites, and milk production were examined. Thirty-two multiparous Holstein cows (body weight = 642 ± 50 kg; days in milk = 78 ± 11 d; milk production = 56 ± 6 kg/d; mean ± standard deviation) were used in a randomized block design with 6-wk periods after a 10-d covariate period. Each period consisted of 14 d of adaptation followed by 28 d of data collection. The control diet contained CS and AH as forage sources (CSAH) with 17% of dietary dry matter as uNDF after 30 h of incubation (uNDF30). Wheat straw was substituted for AH (WSCS), CS (WSAH), or both (WSCSAH) on an uNDF30 basis, and beet pulp was used to obtain similar concentrations of NDF digestibility after 30 h of incubation (NDFD30 = 44.5% of NDF) across all diets. The 4 diets also contained similar concentrations of net energy for lactation and metabolizable protein. Dry matter intake was greatest for WSCS (27.8 kg/d), followed by CSAH (25.7 kg/d), WSCSAH (25.2 kg/d), and WSAH (24.2 kg/d). However, yields of milk, 3.5% fat-corrected milk (FCM), and energy-corrected milk did not differ, resulting in higher FCM efficiency (kg of FCM yield/kg of dry matter intake) for WSAH (1.83) and WSCSAH (1.79), followed by CSAH (1.69) and WSCS (1.64). Milk protein percentage was greater for CSAH (2.84%) and WSCS (2.83%) than for WSAH (2.78%), and WSCSAH (2.81%) was intermediate. The opposite trend was observed for milk urea nitrogen, which was lower for CSAH (15.8 mg/dL), WSCS (15.8 mg/dL), and WSCSAH (17.0 mg/dL) than for WSAH (20 mg/dL). Total-tract NDF digestibility and ruminal pH were greater for diets containing WS than the diet without WS (CSAH), but digestibility of other nutrients was not affected by dietary treatments. Cows fed WSAH had less body reserves (body weight change = −13.5 kg/period) than the cows fed the other diets, whereas energy balance was greatest for those fed WSCS. The results showed that feeding high-producing dairy cows diets containing different forage sources but formulated to supply similar concentrations of uNDF30 while maintaining NDFD30, net energy for lactation, and metabolizable protein constant did not influence milk production. However, a combination of WS and CS (WSCS diet) compared with a diet with CS and AH improved feed intake, ruminal pH, total-tract NDF digestibility, and energy balance of dairy cows.  相似文献   

10.
Brown midrib brachytic dwarf pearl millet (Pennisetum glaucum) forage harvested at the flag leaf visible stage and subsequently ensiled was investigated as a partial replacement of corn silage in the diet of high-producing dairy cows. Seventeen lactating Holstein cows were fed 2 diets in a crossover design experiment with 2 periods of 28 d each. Both diets had forage:concentrate ratios of 60:40. The control diet (CSD) was based on corn silage and alfalfa haylage, and in the treatment diet, 20% of the corn silage dry matter (corresponding to 10% of the dietary dry matter) was replaced with pearl millet silage (PMD). The effects of partial substitution of corn silage with pearl millet silage on dry matter intake, milk yield, milk components, fatty acid profile, apparent total-tract digestibility of nutrients, N utilization, and enteric methane emissions were analyzed. The pearl millet silage was higher in crude protein and neutral detergent fiber and lower in lignin and starch than the corn silage. Diet did not affect dry matter intake or energy-corrected milk yield, which averaged 46.7 ± 1.92 kg/d. The PMD treatment tended to increase milk fat concentration, had no effect on milk fat yield, and increased milk urea N. Concentrations and yields of milk protein and lactose were not affected by diet. Apparent total-tract digestibility of dry matter decreased from 66.5% in CSD to 64.5% in PMD. Similarly, organic matter and crude protein digestibility was decreased by PMD, whereas neutral- and acid-detergent fiber digestibility was increased. Total milk trans fatty acid concentration was decreased by PMD, with a particular decrease in trans-10 18:1. Urinary urea and fecal N excretion increased with PMD compared with CSD. Milk N efficiency decreased with PMD. Carbon dioxide emission was not different between the diets, but PMD increased enteric methane emission from 396 to 454 g/d and increased methane yield and intensity. Substituting corn silage with brown midrib dwarf pearl millet silage at 10% of the diet dry matter supported high milk production in dairy cows. When planning on farm forage production strategies, brown midrib dwarf pearl millet should be considered as a viable fiber source.  相似文献   

11.
The effect of neutral detergent fiber (NDF) degradability of corn silage in diets containing lower and higher NDF concentrations on lactational performance, nutrient digestibility, and ruminal characteristics in lactating Holstein cows was measured. Eight ruminally cannulated Holstein cows averaging 91 ± 4 (standard error) days in milk were used in a replicated 4 × 4 Latin square design with 21-d periods (7-d collection periods). Dietary treatments were formulated to contain either conventional (CON; 48.6% 24-h NDF degradability; NDFD) or brown midrib-3 (BM3; 61.1% 24-h NDFD) corn silage and either lower NDF (LNDF) or higher NDF (HNDF) concentration (32.0 and 35.8% of ration dry matter, DM) by adjusting the dietary forage content (52 and 67% forage, DM basis). The dietary treatments were (1) CON-LNDF, (2) CON-HNDF, (3) BM3-LNDF, and (4) BM3-HNDF. Data were analyzed as a factorial arrangement of diets within a replicated Latin square design with the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with fixed effects of NDFD, NDF, NDFD × NDF, period(square), and square. Cow within square was the random effect. Time and its interactions with NDFD and NDF were included in the model when appropriate. An interaction between NDFD and NDF content resulted in the HNDF diet decreasing dry matter intake (DMI) with CON corn silage but not with BM3 silage. Cows fed the BM3 corn silage had higher DMI than cows fed the CON corn silage, whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. Cows fed the BM3 diets had greater energy-corrected milk yield, higher milk true protein content, and lower milk urea nitrogen concentration than cows fed CON diets. Additionally, cows fed the BM3 diets had greater total-tract digestibility of organic matter and NDF than cows fed the CON diets. Compared with CON diets, the BMR diets accelerated ruminal NDF turnover. When incorporated into higher NDF diets, corn silage with greater in vitro 24-h NDFD and lower undegradable NDF at 240 h of in vitro fermentation (uNDF240) allowed for greater DMI intake than CON. In contrast, for lower NDF diets, NDFD of corn silage did not affect DMI, which suggests that a threshold level of inclusion of higher NDFD corn silage is necessary to observe enhanced lactational performance. Results suggest that there is a maximum gut fill of dietary uNDF240 and that higher NDFD corn silage can be fed at greater dietary concentrations.  相似文献   

12.
Extrusion treated canola meal (TCM) was produced in an attempt to increase the rumen-undegraded protein fraction of canola meal (CM). The objective of this study was to evaluate the effects of replacing soybean meal (SBM) with CM or TCM on ruminal digestion, omasal nutrient flow, and performance in lactating dairy cows. To assess performance, 30 multiparous Holstein cows averaging (mean ± SD) 119 ± 23 d in milk and 44 ± 7 kg of milk/d and 15 primiparous cows averaging 121 ± 19 d in milk and 34 ± 6 kg of milk/d were blocked in a randomized complete block design with a 2-wk covariate period and 12-wk experimental period (experiment 1). Dietary ingredients differed only in protein supplements, which were SBM, CM, or TCM. All diets were formulated to contain (dry matter basis) 30% alfalfa silage, 30% corn silage, 4% soy hulls, 2.4% mineral-vitamin premix, and 16% CP. The SBM diet contained 25% high-moisture shelled corn and 8.6% SBM; the canola diets contained 22% high-moisture shelled corn and either 11.2% CM or 11.4% TCM. To assess ruminal digestion and omasal nutrient flow, 6 rumen-cannulated cows were blocked into 2 squares of 3 cows and randomly assigned within blocks to the same 3 dietary treatments as in experiment 1 in a replicated 3 × 3 Latin square design (experiment 2). Data were analyzed using the MIXED procedure of SAS (SAS Institute, Cary, NC). Orthogonal contrasts were used to compare effects of different protein supplements: SBM versus CM + TCM and CM versus TCM. In experiment 1, compared with SBM, apparent total-tract digestibilities of dry matter and nutrients were greater in cows fed both CM diets, and there was a tendency for nutrient digestibilities to be higher in cows fed CM compared with TCM. Diets did not affect milk yield and milk components; however, both canola diets decreased urinary urea N (% of total urinary N), fecal N (% of total N intake), and milk urea N concentration. In experiment 2, compared with SBM, both canola diets increased N intake and tended to increase rumen-degraded protein supply (kg/d) and N truly digested in the rumen (kg/d). Diets did not affect ruminal digestibility, efficiency of microbial protein synthesis, and rumen-undegraded protein flow among diets. Results from this experiment indicate that replacing SBM with CM or TCM in diets of lactating cows improved digestibility and may reduce environmental impact. Moreover, under the conditions of the present study, treating CM by extrusion did not improve CM utilization.  相似文献   

13.
An experiment was conducted to evaluate the effects of varying the alfalfa inclusion rate in diets containing 31% (dry matter basis) wet corn gluten feed (Sweet Bran, Cargill Inc.). Eighty primiparous and multiparous Holstein cows averaging 178 ± 90 d in milk (mean ± SD) were randomly assigned to 1 of 4 sequences in a 4 × 4 Latin square design with 28-d periods. Treatments were diets containing 0, 7, 14, or 21% alfalfa on a dry matter basis, with corn silage, corn grain, soybean meal, expeller soybean meal, and mineral supplements varying across diets to maintain uniform nutrient densities. Diets were formulated for similar crude protein, neutral detergent fiber, and nonfiber carbohydrate concentrations. Feed intake, milk production, body weight, and body condition score were monitored, and linear and quadratic effects of increasing the alfalfa inclusion rate were assessed using mixed model analysis. As the alfalfa inclusion rate increased, dry matter intake tended to increase linearly (26.7, 27.3, 27.4, and 27.5 kg/d for 0, 7, 14, and 21% alfalfa, respectively), and solids-corrected milk (29.9, 30.2, 30.8, and 30.5 kg/d) and energy-corrected milk production (32.9, 33.3, 33.8, and 33.6 kg/d) tended to increase linearly. Body weight gain decreased linearly (22.9, 18.0, 11.2, and 9.5 kg/28 d) with increasing alfalfa inclusion rate. Although increasing the inclusion rate of alfalfa increased the proportion of large particles in the diets, treatments had no effect on milk fat yield or concentration. Feeding more alfalfa (up to 21% of dry matter) tended to increase milk yield while decreasing body weight gain, suggesting that metabolizable energy utilization shifted from body weight gain to milk production in these treatments. However, adding alfalfa to the diet had only minor effects on productivity.  相似文献   

14.
This study examined the effect of 3-nitrooxypropanol (3-NOP), an investigational substance, on enteric methane emission, milk production, and composition in Holstein dairy cows. Following a 3-wk covariate period, 48 multi- and primiparous cows averaging (± standard deviation) 118 ± 28 d in milk, 43.4 ± 8 kg/d milk yield, and 594 ± 57 kg of body weight were blocked based on days in milk, milk yield, and enteric methane emission and randomly assigned to 1 of 2 treatment groups: (1) control, no 3-NOP, and (2) 3-NOP applied at 60 mg/kg feed dry matter. Inclusion of 3-NOP was through the total mixed ration and fed for 15 consecutive weeks. Cows were housed in a freestall barn equipped with a Calan Broadbent Feeding System (American Calan Inc., Northwood, NH) for monitoring individual dry matter intake and fed ad libitum once daily. Enteric gaseous emissions (methane, carbon dioxide, and hydrogen) were measured using 3 GreenFeed (C-Lock Inc., Rapid City, SD) units. Dry matter intake, cow body weight, and body weight change were not affected by 3-NOP. Compared with the control group, 3-NOP applied at 60 mg/kg feed dry matter decreased daily methane emission, emission yield, and emission intensity by 26, 27, and 29%, respectively. Enteric emission of carbon dioxide was not affected, and hydrogen emission was increased 6-fold by 3-NOP. Administration of 3-NOP had no effect on milk and energy-corrected milk yields and feed efficiency, increased milk fat and milk urea nitrogen concentrations, and increased milk fat yield but had no other effects on milk components. Concentration of C6:0 and C8:0 and the sum of saturated fatty acids in milk fat were increased by 3-NOP. Total trans fatty acids and the sum of polyunsaturated fatty acids were decreased by 3-NOP. In this experiment, 3-NOP decreased enteric methane daily emission, yield, and intensity without affecting dry matter intake and milk yield, but increased milk fat in high-producing dairy cows.  相似文献   

15.
The physical form of feeds can influence dairy cow chewing behavior, rumen characteristics, and ruminal passage rate. Changing particle size of feeds is usually done through grinding or chopping forages, but pelleting feed ingredients also changes particle size. Our objective was to determine if pelleted dried distillers grains and solubles (DDGS) affected the feeding value for lactating dairy cattle. Seven lactating Jersey cows that were each fitted with a ruminal cannula averaging (± standard deviation) 56 ± 10.3 d in milk and 462 ± 75.3 kg were used in a crossover design. The treatments contained 15% DDGS in either meal or pelleted form with 45% or 55% forage on a dry matter basis. The forages were alfalfa hay, corn silage, and wheat straw. The factorial treatment arrangement was meal DDGS and low forage (mDDGS-LF), pelleted DDGS and low forage (pDDGS-LF), meal DDGS and high forage (mDDGS-HF), and pelleted DDGS and high forage (pDDGS-HF). Dry matter intake and energy-corrected milk were both unaffected by treatment averaging 19.8 ± 2.10 kg/d and 33.9 ± 1.02 kg/d, respectively. Fat yield was unaffected averaging 1.7 ± 0.13 kg/d, but protein yield was affected by the interaction of forage and DDGS. Protein yield was similar for both low forage treatments but was increased by when pDDGS was fed in the high forage treatment (1.05 vs. 0.99 ± 0.035 kg/d). When forage concentration was increased, starch digestibility increased by 1.9 percentage units, crude protein digestibility tended to increase 1.1 percentage units, and residual organic matter digestibility decreased 3.4 percentage units. Pelleting DDGS increased digestibility of neutral detergent fiber (NDF) digestibility (49.2 vs. 47.5 ± 1.85%) and gross energy (68.2 vs. 67.1 ± 1.18%). Increasing forage increased ruminal pH (5.85 to 5.94 ± 0.052). Passage rate slowed from 2.84 to 2.65 ± 0.205 %/h when feeding HF compared with LF. Rumination time increased from 417 to 454 ± 49.4 min with increasing forage concentration but was unaffected by the form of DDGS or the interaction of forage and DDGS. Eating time increased with pDDGS (235 vs. 209 ± 19.8 min), which may be a result of increased feed sorting behavior. Pelleting DDGS increased preference for particles retained on the 8-mm sieve and decreased preference for particles on the 1.18-mm sieve and in the pan (<1.18 mm). Results confirm that increasing forage concentration increases ruminal pH, rumination time, and slows passage rate, but contrary to our hypothesis increasing forage concentration did not increase NDF digestibility. Results also suggest that pelleted DDGS do not appear to affect milk production, ruminal characteristics, or passage rate, but pelleted DDGS may increase sorting behavior of lactating Jersey cows and increase NDF and gross energy digestibility.  相似文献   

16.
A dual-purpose hybrid and a hybrid selected for high neutral detergent fiber (NDF) concentration were harvested as corn silage. The dual-purpose silage (DPCS) had 42% NDF and 35.4% in vitro (30 h) NDF digestibility and the high fiber silage (HFCS) had 49% NDF and 40.1% in vitro NDF digestibility. Two diets (dry matter basis) had 45% DPCS or HFCS and 46% corn grain-based concentrate (dietary NDF was 29 and 32%, respectively), a third diet had 33% HFCS and 58% corn-based concentrate (27% dietary NDF), and a fourth diet had 33% DPCS and 58% concentrate that contained soybean hulls (32% dietary NDF). All diets contained 9% alfalfa silage. Diets were fed to eight midlactation Holstein cows in a 4 x 4 Latin square with 28 d periods. No differences among treatments were observed for milk yield (34.1 kg/d), dry matter intake (23.7 kg/d), and yield and concentration of milk protein. Cows fed the diet with 33% HFCS tended to have lower milk fat percentage than cows fed the 45% DPCS diet. Total digestible nutrients (measured using total collection) tended to be lower for the 33% DPCS diet than for the 45% DPCS diet. In vivo digestibility of NDF tended to be lower for the 33% HFCS diet than the 45% DPCS diet, but digestibility of starch in the two diets with HFCS was higher than the 45% DPCS diet. The lack of any substantial differences in responses suggest that the HFCS was equal to the DPCS when fed at 45% of the diet dry matter (53.5% total forage). When HFCS replaced DPCS so that NDF was similar between diets, milk fat percentage was reduced and ruminal propionate was increased. Increasing dietary NDF by adding soybean hulls to a diet based on DPCS reduced digestibility of dry matter, organic matter, and protein, and resulted in lower energy balance than the 45% DPCS diet.  相似文献   

17.
《Journal of dairy science》2021,104(11):11593-11608
The objective of this study was to evaluate the effect of concentrate supplement type on milk production, nutrient intake, and total-tract nutrient digestion in lactating dairy cows grazing mid-season perennial ryegrass (Lolium perenne L.; PRG) pasture. Twelve primiparous (mean ± standard deviation; 95 ± 30 d in milk and 470 ± 43 kg of body weight) and 68 multiparous (99 ± 24 d in milk and 527 ± 64 kg of body weight) lactating dairy cows were blocked based on pre-study milk yield and parity and randomly assigned to 1 of 4 dietary treatments. The 4 dietary treatments were a non-supplemented PRG control (PRG); PRG supplemented with 4.4 kg of dry matter (DM) per cow per day of citrus pulp and 0.067 kg of DM/cow per day of urea (PRG+C); PRG supplemented with 0.8 kg of DM/cow per day of heat-treated soybean meal (PRG+PP); and PRG supplemented with 3.1 kg of DM/cow per day of a combination of heat-treated soybean meal and citrus pulp (PRG+C+PP). The study consisted of a 2-wk adaptation period and a 10-wk period of data collection. Weekly measurements of milk yield, body weight, body condition score, and feeding and rumination time were made. Nutrient intake and total-tract digestibility were measured during wk 6 of the study. A large soil moisture deficit was experienced during the study that probably reduced herbage growth rate and likely altered the chemical composition of the PRG offered when compared with typical mid-season PRG. Total dry matter intake was increased in cows fed PRG+C compared with cows fed PRG and PRG+PP and was similar to cows fed PRG+C+PP (18.0, 15.9, 16.4, and 17.2 ± 0.41 kg of DM/d, respectively). The apparent total-tract neutral detergent fiber digestibility of cows fed the PRG+C diet was lower compared with the PRG and PRG+PP diets and was similar to the PRG+C+PP diet (0.67, 0.70, 0.70, and 0.69 ± 0.01 g/g, respectively). The energy-corrected milk (ECM) yield of cows fed PRG+C+PP was highest (23.7 kg/d), PRG+C was intermediate (22.2 kg/d), and PRG was lowest (20.8 kg/d). Cows fed PRG+PP produced more ECM (22.9 kg/d) compared with cows fed PRG and produced similar ECM compared with cows fed PRG+C and PRG+C+PP diets. The PRG+PP diet increased milk protein yield compared with the PRG diet, tended to increase milk protein yield compared with the PRG+C diet, and was similar to the PRG+C+PP diet. Milk fat concentration and the composition of milk fat were not influenced by treatment. The results demonstrated that, for cows consuming pasture-based diets, increasing metabolizable protein supply allowed higher milk yield as metabolizable protein was more limiting than metabolizable energy. However, due to the large soil moisture deficit experienced during this experiment, caution is recommended when extrapolating these results to cows consuming typical mid-season PRG herbage.  相似文献   

18.
Diet-induced milk fat depression (MFD) is a multifactorial condition resulting from the interaction of numerous risk factors, including diet fermentability and unsaturated fatty acids concentration, feed additives, and individual cow effects. 2-Hydroxy-4-(methylthio)butanoate (HMTBa) is a methionine analog that has been observed to increase milk fat in some cases, and interactions with MFD risk factors may exist. The objective was to evaluate the effect of HMTBa supplementation on milk fat synthesis in cows with different levels of milk production and fed diets with increasing risk of biohydrogenation-induced MFD. Sixteen high-producing cows (44.1 ± 4.5 kg of milk/d; mean ± SD) and 14 low-producing (31.4 ± 4.3 kg of milk/d) were used in a randomized block design. Treatments were unsupplemented control and HMTBa fed at 0.1% of diet dry matter (25 g/d at 25 kg of dry matter intake). The experiment was 70 d and included a 14-d covariate period followed by 3 phases whereby diets were fed with increasing risk of MFD to determine the interaction of treatment and diet-induced MFD. During the low-risk phase, the base diet was balanced to 33.5% neutral detergent fiber (NDF) and had no exogenous oil (28 d); during the moderate-risk phase, the diet was balanced to 31% NDF and contained 0.75% soybean oil (14 d); and, during the high-risk phase, the diet was balanced to 28.5% NDF and contained 1.5% soybean oil (14 d). An interaction of treatment, production-level, and dietary phase was observed. Low producing cows neither experienced substantial biohydrogenation-induced MFD nor a response in milk fat to HMTBa supplementation. In high-producing cows, HMTBa maintained higher milk fat concentration during the moderate- (2.94 vs. 3.49%) and high-risk (2.38 vs. 3.11%) phases. High-producing cows receiving HMTBa also had greater milk fat yield (0.94 vs. 1.16 kg/d) and lower trans-10 C18:1 (6.11 vs. 1.50) during the high-risk phase. In conclusion, HMTBa increased milk fat in situations with a high risk of biohydrogenation-induced MFD by decreasing absorption of alternate biohydrogenation intermediates.  相似文献   

19.
Dietary medium-chain fatty acids (C(8:0) through C(12:0)) are researched for their potential to reduce enteric methane emissions and to increase N utilization efficiency in ruminants. We aimed to 1) compare coconut oil (CNO; ~60% medium-chain fatty acids) with a source of long-chain fatty acids (animal fat blend; AFB) on lactational responses in a high-starch diet and 2) determine the effect of different dietary concentrations of CNO on dry matter intake (DMI). In experiment 1, the control diet (CTRL) contained (dry basis) 40% forage (71% corn silage, and alfalfa hay and haylage), 26% NDF, and 35% starch. Isonitrogenous treatment diets contained 5.0% of AFB (5%-AFB), CNO (5%-CNO), or a 1-to-1 mixture of AFB and CNO (5%-AFB-CNO) and 0.8% corn gluten meal in place of corn grain. Thirty-two multiparous dairy cows (201 ± 46 d postpartum; 42.0 ± 5.5 kg/d 3.5% fat-corrected milk yield) were adapted to CTRL, blocked by milk yield, and randomly assigned to 1 of 4 treatment diets for 21 d with samples and data collected from d 15 through 21. Treatment 5%-CNO decreased DMI markedly and precipitously and was discontinued after d 5. In wk 3, 5%-AFB and especially 5%-AFB-CNO lowered total-tract NDF digested vs. CTRL (2.6 vs. 1.8 vs. 3.1 kg/d, respectively), likely because fat treatments reduced DMI and 5%-AFB-CNO impaired total-tract NDF digestibility. Milk fat concentrations were 3.10% (CTRL), 2.51% (5%-AFB), and 1.97% (5%-AFB-CNO) and correlated negatively to concentrations of C(18:2 trans-10,cis-12) in milk fat. Additionally, 5%-AFB and 5%-AFB-CNO tended to lower milk yield and decreased yields of solids-corrected milk and milk protein compared with CTRL. Fat treatments decreased milk lactose concentration, but increased milk citrate concentration. Moreover, cows fed 5%-AFB-CNO produced less solids-corrected milk than did cows fed 5%-AFB. In experiment 2, diets similar to CTRL contained 2.0, 3.0, or 4.0% CNO. Fifteen multiparous cows (219 ± 42 d postpartum; 42.1 ± 7.0 kg milk yield; mean ± SD) were blocked by DMI and randomly assigned to 1 of 3 treatment diets for an 8-d evaluation. Dietary concentration of CNO affected DMI, with the greatest depression at 4.0% CNO. Overall, dietary CNO depressed DMI and NDF digestibility of a high-starch diet compared with AFB. Feeding CNO to lactating cows equal to or greater than 2.5% decreased lactational performance or DMI.  相似文献   

20.
The objective of this study was to evaluate the effects of a fermentation byproduct on rumen fermentation and microbial yield in high producing lactating dairy cattle. Eight ruminally cannulated multiparous Holstein cows averaging (mean ± standard deviation) 60 ± 10 d in milk and 637 ± 38 kg of body weight were assigned to 1 of 2 treatment sequences in a switchback design. Treatment diets contained (dry matter basis) 44% corn silage, 13% alfalfa silage, 12% ground corn, and 31% premix containing either a control mix of urea and wheat middlings (CON) or a commercial fermentation byproduct meal (Fermenten, Arm and Hammer Animal Nutrition, Princeton, NJ) at 3% diet inclusion rate (EXP). Diets were formulated to be isonitrogenous and isocaloric, with similar levels of neutral detergent fiber and starch. The trial consisted of three 28-d experimental periods, where each period consisted of 21 d of diet adaptation and 7 d of data and sample collection. Omasal nutrient flows were determined using a triple-marker technique and double-labeled 15N15N-urea. The EXP diet provided 18 g/d more nonammonia N versus the CON diet, representing 3.0% of total N intake. Energy-corrected milk yield (41.7 and 43.1 kg/d for CON and EXP, respectively), milk fat, and protein yield and content did not differ between treatments. Total dry matter intake was similar between treatments (25.5 and 26.4 kg/d for CON and EXP, respectively). Ammonia N concentration and pool size in the rumen was greater in cows fed the EXP diet. No differences were observed in rumen or total-tract dry matter, organic matter, or neutral detergent fiber digestibility. Ruminal degradation of feed N was 15% lower in cows fed EXP diets, resulting in differences in omasal N flows. Results demonstrated the fermentation byproduct meal had a sparing effect on degradable feed protein, but did not increase microbial N flow from the rumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号