首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Although the effect of nutrition on enteric methane (CH4) emissions from confined dairy cattle has been extensively examined, less information is available on factors influencing CH4 emissions from grazing dairy cattle. In the present experiment, 40 Holstein-Friesian dairy cows (12 primiparous and 28 multiparous) were used to examine the effect of concentrate feed level (2.0, 4.0, 6.0, and 8.0 kg/cow per day; fresh basis) on enteric CH4 emissions from cows grazing perennial ryegrass-based swards (10 cows per treatment). Methane emissions were measured on 4 occasions during the grazing period (one 4-d measurement period and three 5-d measurement periods) using the sulfur hexafluoride technique. Milk yield, liveweight, and milk composition for each cow was recorded daily during each CH4 measurement period, whereas daily herbage dry matter intake (DMI) was estimated for each cow from performance data, using the back-calculation approach. Total DMI, milk yield, and energy-corrected milk (ECM) yield increased with increasing concentrate feed level. Within each of the 4 measurement periods, daily CH4 production (g/d) was unaffected by concentrate level, whereas CH4/DMI decreased with increasing concentrate feed level in period 4, and CH4/ECM yield decreased with increasing concentrate feed level in periods 2 and 4. When emissions data were combined across all 4 measurement periods, concentrate feed level (2.0, 4.0, 6.0, and 8.0 kg/d; fresh basis) had no effect on daily CH4 emissions (287, 273, 272, and 277 g/d, respectively), whereas CH4/DMI (20.0, 19.3, 17.7, and 18.1 g/kg, respectively) and CH4-E/gross energy intake (0.059, 0.057, 0.053, and 0.054, respectively) decreased with increasing concentrate feed levels. A range of prediction equations for CH4 emissions were developed using liveweight, DMI, ECM yield, and energy intake, with the strongest relationship found between ECM yield and CH4/ECM yield (coefficient of determination = 0.50). These results demonstrate that offering concentrates to grazing dairy cows increased milk production per cow and decreased CH4 emissions per unit of milk produced.  相似文献   

2.
《Journal of dairy science》2022,105(2):1387-1401
Antibiotic dry cow therapy (aDCT) at the end of lactation is an effective mastitis control measure. Selective dry cow therapy means that only infected or presumed-infected cows are treated, instead of aDCT being used as a treatment for all cows. Because antibiotic resistance poses a global threat, livestock production is under increasing pressure to reduce antibiotic use. Changes in management should not, however, impair animal welfare or cause significant economic losses. Our objective was to compare milk yield and somatic cell count (SCC) between aDCT-treated and untreated cows in herds that used selective aDCT, taking into account risk factors for reduced yield and high SCC. The information source was 2015 to 2017 Dairy Herd Improvement data, with 4,720 multiparous cows from 172 Finnish dairy farms. The response variables were test-day milk yield (kg/d) and naturally log-transformed composite SCC (×1,000 cells/mL) during the first 154 d in milk (DIM). The statistical tool was a linear mixed-effects model with 2-level random intercepts, cows nested within herds, and a first-order autoregressive [AR(1)] correlation structure. The overall proportion of aDCT-treated cows was 25% (1,176/4,720). Due to the interaction effect, SCC on the last test day prior to dry-off affected postcalving milk yield differently in aDCT-treated cows than in untreated cows. A higher SCC prior to dry-off correlated with a greater daily yield difference after calving between cows treated and untreated. The majority of cows had SCC < 200,000 cells/mL before dry-off, and as SCC before dry-off decreased, difference in yield between aDCT-treated and untreated cows decreased. Postcalving SCC was lower for aDCT-treated cows compared with untreated cows. To illustrate, for cows with an SCC of 200,000 cells/mL before dry-off, compared with untreated cows, aDCT-treated cows produced 0.97 kg/d more milk and, at 45 DIM, had an SCC that was 20,000 cells/mL lower. Higher late-lactation SCC and lactational mastitis treatments were associated with higher postcalving SCC. A dry period lasting more than 30 d was associated with higher yields but not with SCC. Our findings indicate that a missed aDCT treatment for a high-SCC cow has a negative effect on subsequent lactation milk yield and SCC, which emphasizes the importance of accurate selection of cows to be treated.  相似文献   

3.
The effect of concentrate feeding level on enteric CH4 emissions from cows grazing medium quality summer pasture is yet to be investigated. Sixty multiparous Jersey cows (9 rumen-cannulated) were used in a randomized complete block design study (with the cannulated cows in a 3 × 3 Latin square design) to investigate the effect of concentrate feeding level (0, 4, and 8 kg/cow per day; as-fed basis) on enteric CH4 emissions, production performance, and rumen fermentation of dairy cows grazing summer pasture (17 cows plus 3 cannulated cows per treatment). Enteric CH4 emissions were measured from 11 cows per treatment group during one 7-d measurement period using the sulfur hexafluoride tracer gas technique. Pasture dry matter intake (DMI) was determined parallel with the CH4 measurement period using TiO2 as an external marker, and milk yield, milk composition, cow condition, and pasture pre- and postgrazing measurements were also recorded. Daily total DMI (11.2 to 15.6 kg/cow), milk yield (9.1 to 18.2 kg/cow), energy-corrected milk (ECM; 11.2 to 21.6 kg/cow), and milk lactose content (44.1 to 46.7 g/kg) increased linearly, whereas pasture DMI (11.2 to 8.4 kg/cow) decreased linearly with increasing concentrate feeding level. Daily CH4 production (323 to 378 g/d) increased linearly due to the increase in total DMI, whereas CH4 yield (29.1 to 25.1 g/kg of DMI) and CH4 intensity (35.5 to 21.1 g/kg of milk yield; and 28.8 to 17.6 g/kg of ECM) decreased linearly with increasing concentrate feeding level. Diurnal ruminal pH (6.45 to 6.32) and in sacco DM and neutral detergent fiber disappearance decreased linearly. Acetic and propionic acid were unaffected by treatment, whereas butyric acid (5.21 to 6.14 mM) increased linearly and quadratically with increasing concentrate feeding level. It was concluded that a high concentrate feeding level not only increases animal efficiency but is moreover a viable CH4 mitigation option for dairy cows grazing kikuyu-dominant pasture in late summer when pasture is inherently fibrous.  相似文献   

4.
Rotational 3-breed crossbred cows of Montbéliarde, Viking Red, and Holstein (CB) were compared with Holstein (HO) cows for alternative measures of feed efficiency as well as income over feed cost (IOFC) and residual feed intake (RFI) during the first 150 d of first, second, and third lactations. Primiparous and multiparous CB (n = 63 and n = 43, respectively) and HO (n = 60 and n = 37, respectively) cows were fed the same total mixed ration twice daily with refusals weighed once daily. Feed was analyzed for dry matter content, net energy for lactation, and crude protein content. Body weight (BW) was recorded twice weekly. Daily production of milk, fat, and protein were estimated from monthly test days with best prediction. Measures of efficiency from 4 to 150 d in milk (DIM) were feed conversion efficiency (FCE), defined as fat plus protein production (kg) per kilogram of dry matter intake (DMI); ECM/DMI, defined as kilograms of energy-corrected milk (ECM) per kilogram of DMI; net energy for lactation efficiency (NELE), defined as ECM (kg) per megacalorie of net energy for lactation intake; crude protein efficiency (CPE), defined as true protein production (kg) per kilogram of crude protein intake; and DMI/BW, defined as DMI (kg) per kilogram of BW. The IOFC was defined as revenue from fat plus protein production minus feed cost. The RFI from 4 to 150 DIM for each lactation was the residual error remaining from regression of DMI on milk energy output (Mcal), metabolic BW, and energy required for change in BW (Mcal). Statistical analysis of measures of feed efficiency and RFI for primiparous cows included the fixed effects of year of calving and breed group. For multiparous cows, statistical analysis included breed as a fixed effect and cow as a repeated effect nested within breed group. Primiparous CB cows had higher means for FCE (+5.5%), ECM/DMI (+4.0%), NELE (+4.0%), and CPE (+5.2%) and a lower mean DMI/BW (–5.3%) than primiparous HO cows. Primiparous CB cows ($875) also had higher mean IOFC than primiparous HO cows ($825). In addition, mean RFI from 4 to 150 DIM was significantly lower (more desirable) for primiparous CB cows than HO cows. Likewise, multiparous CB cows had higher means for FCE (+8.2%), ECM/DMI (+5.9%), NELE (+5.8%), and CPE (+8.1%) and a lower mean for DMI/BW (–4.8%) than multiparous HO cows. Multiparous CB cows ($1,296) also had a higher mean for IOFC than multiparous HO cows ($1,208) and a lower mean for RFI from 4 to 150 DIM than HO cows.  相似文献   

5.
Milk, fat, and protein loss due to a new subclinical mastitis case may be economically important, and the objective of this study was to estimate this loss. The loss was estimated based on test-day (TD) cow records collected over a 1-yr period from 400 randomly selected Dutch dairy herds. After exclusion of records from cows with clinical mastitis, the data set comprised 251,647 TD records from 43,462 lactations of 39,512 cows. The analysis was carried out using a random regression test-day modeling approach that predicts the cow production at each TD based on the actual production at all previous TD. The definition of new subclinical mastitis was based on the literature and assumed a new subclinical case if somatic cell count (SCC) was >100,000 cells/mL after a TD with SCC <50,000 cells/mL. A second data set was created by applying an adjustment to correct low SCC for the dilution effect when determining if the previous test-day SCC was <50,000 cells/mL. Thereafter, the loss was estimated for records with SCC >100,000 cells/mL. The production (milk, fat, or protein) losses were modeled as the difference between the actual and predicted production (milk, fat, or protein) at the TD of new subclinical mastitis, for 4,382 cow records, and 2,545 cow records after dilution correction. Primiparous cows were predicted to lose 0.31 (0.25-0.37) and 0.28 (0.20-0.35) kg of milk/d at an SCC of 200,000 cells/mL, for unadjusted and adjusted low SCC, respectively. For the same SCC increase, multiparous cows were predicted to lose 0.58 (0.54-0.62) and 0.50 (0.44-0.56) kg of milk/d, respectively. Moreover, it was found that the greater the SCC increase above 100,000 cells/mL, the greater the production losses. The estimated production losses were more precise than previously reported estimates.  相似文献   

6.
《Journal of dairy science》2023,106(7):4650-4665
The objective of this study was to evaluate the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP) on milk production efficiency of Holstein cows naturally exposed to high temperature and humidity conditions. The study was conducted in 2 commercial farms in Mexico from July to October 2020 and included 1 wk covariate period, 3 wk adaptation, and 12 wk data collection. Cows [n = 1,843; ≥21 d in milk (DIM) and <100 d carried calf] were enrolled and assigned to the study pens (n = 10) balanced for parity, milk yield, and DIM. Pens were fed a total mixed ration diet either without (CTRL) or with SCFP (19 g/d, NutriTek, Diamond V). Milk yield, energy-corrected milk (ECM), milk components, linear somatic cell score, dry matter intake (DMI), feed efficiency (FE; Milk/DMI and ECM/DMI), body condition score, and the incidence of clinical mastitis, pneumonia, and culling were monitored. Statistical analyses included mixed linear and logistic models accounting for repeated measures (when applicable; multiple measurements per cow within treated pens) with pen as the experimental unit and treatment, time (week of study), parity (1 vs. 2+), and their interactions as fixed and pen nested within farm and treatment as random effect. Parity 2+ cows within pens fed SCFP produced more milk than cows within CTRL pens (42.1 vs. 41.2 kg/d); there were no production differences between groups of primiparous groups. Cows within SCFP pens had lower DMI (25.2 vs. 26.0 kg/d) and greater FE (1.59 vs. 1.53) and ECM FE (1.73 vs. 1.68) than cows within CTRL pens. Milk components, linear somatic cell score, health events, and culling were not different between groups. At the end of the study (245 ± 54 DIM), SCFP cows had greater body condition score than CTRL (3.33 vs. 3.23 in the first parity; 3.11 vs. 3.04 in 2+ parity cows). Feeding Saccharomyces cerevisiae fermentation products to lactating cows exposed to high temperature and humidity conditions improved FE.  相似文献   

7.
High feed costs make feed conversion efficiency a desirable target for genetic improvement. Residual feed intake (RFI), calculated as the difference between observed and predicted intake, is a commonly used estimate of feed efficiency. However, determination of feed efficiency in dairy herds is challenging due to difficulties in measuring feed intake of individual animals reliably. Using residual CO2 (RCO2) production as an estimate of feed efficiency would allow ranking the cows according to feed efficiency, provided that CO2 production is closely related to heat production and feed intake. The objective of this study was to evaluate the potential of RCO2 as an index of feed efficiency using data from respiration calorimetry studies (289 cow per period observations). Heat production was precisely predicted from CO2 production [root mean square error (RMSE)] adjusted for random effects was 1.5% of observed mean]. Dry matter intake (DMI) was better predicted from energy-corrected milk (ECM) yield and CO2 production than from ECM yield and body weight in the model (adjusted RSME = 0.92 vs. 1.39 kg/d). Residual CO2 production estimated as the difference between actual CO2 production and that predicted from ECM yield, metabolic body weight was closely related to RFI (adjusted RMSE = 0.42) that was calculated as the difference between actual DMI and that predicted from ECM, metabolic body weight, and energy balance (EB). When the cows were categorized in 3 groups of equal sizes on the basis of RCO2 (low, medium, and high), low RCO2 cows had lower DMI, RFI, methane production and intensity (g/kg ECM), and heat production, but higher efficiency of metabolizable energy utilization for lactation than high RCO2 cows. When RFI was predicted from RCO2, the residuals (observed – predicted) were negatively related to EB and digestibility. Predicting RFI with a 2-variable model based on RCO2 and digestibility, adjusted RMSE decreased to 0.23 kg/d, and residuals were not significantly related to EB. The cows in low RCO2 group had a higher energy digestibility than the cows in the high RCO2 group, and differences in EB were observed between the groups. Error of the model predicting residual ECM production from RCO2 was 1.41 kg/d. The residuals were positively related to ECM yield and energy digestibility. Predicting residual ECM from RCO2 and ECM yield decreased adjusted RMSE to 1.07 kg/d, and further to 0.78 kg/d when digestibility was included in the 2-variable model. It is concluded that RCO2 has a potential for ranking individual cows based on feed efficiency.  相似文献   

8.
The objective of this study was to evaluate the effects of feeding lactating dairy cows with regrowth silages from different 2- and 3-cut harvesting systems on milk production, efficiency of N, and energy utilization. Thirty Nordic Red cows were offered 5 experimental diets containing regrowth silages, crimped barley, and canola meal in replicated incomplete 5 × 4 Latin squares with four 21-d periods consisting of 14 d of feed adaptation and 7 d of sampling. Four second-cut silage diets were examined in a 2 × 2 factorial arrangement, enabling evaluation of effect of harvest time of the early or late first cut on second-cut silages, short or long regrowth interval within second cut, and their interaction on dairy cow performance. The third-cut silage diet harvested from early first cut and short regrowth interval of second-cut ley was compared with the second-cut silage diets to evaluate the difference in dairy cow performance between second- and third-cut silages. Postponing the first cut and extending the regrowth interval decreased dry matter intake (DMI), energy-corrected milk (ECM) yield, nutrient digestibility, and urinary energy output, but improved N efficiency (milk N/N intake). Postponing the first cut also decreased the efficiency of metabolizable energy use for lactation, but increased CH4 yield (CH4/DMI). Extending the regrowth interval decreased feed efficiency (ECM/DMI) and increased CH4 intensity (CH4/ECM). Thus, feeding regrowth silages in 2- or 3-cut systems harvested after an early first cut and short regrowth interval promoted better dairy performance and feed intake, and higher efficiency of feed and energy utilization, but with poorer N efficiency. Feeding third-cut silage improve milk yield and feed efficiency compared with second-cut silages.  相似文献   

9.
Production and disease data from 17,488 lactations in 48 Danish organic dairy herds from 1997 to 2001 were analyzed to obtain estimates on the effect of somatic cell counts (SCC) and mastitis treatment on milk production. A multilevel three-parameter piecewise random coefficients linear model with energy-corrected milk (ECM) as dependent variable and herd, lactation, and test days as levels, was used to model the lactation curve. Covariates related to production, SCC, veterinary treatments, and reproductive performance in the previous lactation as well as information on other diseases in the current lactation were included to describe the production capacity of the individual cow. The average daily milk production at herd level was 20.8, 24.2, and 25.8 kg of ECM/d in first, second, and third or later lactation. The estimates for production losses were on average 0.2, 0.3, and 0.4 kg of ECM/d in first, second, and third or later lactation with each twofold increase in SCC between 100,000 and 1,500,000 cells/ml. The effect varied with the stage of lactation and was nonsignificant around 60 d postpartum and highest at the end of the lactation. The production losses in cows treated for mastitis varied with parity and stage of lactation and were modified by the SCC after treatment. For a cow in third lactation with a SCC below 100,000 cells/ ml before treatment at days in milk = 15, the predicted loss was 435 kg of ECM, including a loss of 135 kg of ECM because of higher SCC compared with the level before treatment. Most of the variation in production related to SCC and mastitis was at the lactation level, and no significant differences were found between herds grouped according to milk production level, SCC, or prevalence of mastitis treatment.  相似文献   

10.
《Journal of dairy science》2021,104(9):9827-9841
This study investigated the effects of an amylase-enabled corn silage on lactational performance, enteric CH4 emission, and rumen fermentation of lactating dairy cows. Following a 2-wk covariate period, 48 Holstein cows were blocked based on parity, days in milk, milk yield (MY), and CH4 emission. Cows were randomly assigned to 1 of 2 treatments in an 8-wk randomized complete block design experiment: (1) control corn silage (CON) from an isogenic corn without α-amylase trait and (2) Enogen hybrid corn (Syngenta Seeds LLC) harvested as silage (ECS) containing a bacterial transgene expressing α-amylase (i.e., amylase-enabled) in the endosperm of the grain. The ECS and CON silages were included at 40% of the dietary dry matter (DM) and contained, on average, 43.3 and 41.8% DM and (% DM) 36.7 and 37.5% neutral detergent fiber, and 36.1 and 33.1% starch, respectively. Rumen samples were collected from a subset of 10 cows using the ororuminal sampling technique on wk 3 of the experimental period. Enteric CH4 emission was measured using the GreenFeed system (C-Lock Inc.). Dry matter intake (DMI) was similar between treatments. Compared with CON, MY (38.8 vs. 40.8 kg/d), feed efficiency (1.47 vs. 1.55 kg of MY/kg of DMI), and milk true protein (1.20 vs. 1.25 kg/d) and lactose yields (1.89 vs. 2.00 kg/d) were increased, whereas milk urea nitrogen (14.0 vs. 12.7 mg/dL) was decreased, with the ECS diet. No effect of treatment on energy-corrected MY (ECM) was observed, but a trend was detected for increased ECM feed efficiency (1.45 vs. 1.50 kg of ECM/kg of DMI) for cows fed ECS compared with CON-fed cows. Daily CH4 emission was not affected by treatment, but emission intensity was decreased with the ECS diet (11.1 vs. 10.3 g/kg of milk, CON and ECS, respectively); CH4 emission intensity on ECM basis was not different between treatments. Rumen fermentation, apart from a reduced molar proportion of butyrate in ECS-fed cows, was not affected by treatment. Apparent total-tract digestibility of nutrients and urinary and fecal nitrogen excretions, apart from a trend for increased DM digestibility by ECS-fed cows, were not affected by treatment. Overall, ECS inclusion at 40% of dietary DM increased milk, milk protein, and lactose yields and feed efficiency, and tended to increase ECM feed efficiency but had no effect on ECM yield in dairy cows. The increased MY with ECS led to a decrease in enteric CH4 emission intensity, compared with the control silage.  相似文献   

11.
Because of low feed intake during the first weeks of lactation, dietary concentration of metabolizable protein (MP) must be elevated. We evaluated effects of providing additional rumen-undegradable protein (RUP) from a single source or a blend of protein and AA sources during the first 3 wk of lactation. We also evaluated whether replacing forage fiber (fNDF) or nonforage fiber with the blend affected responses. In a randomized block design, at approximately 2 wk prepartum, 40 primigravid (664 ± 44 kg of body weight) and 40 multigravid (797 ± 81 kg of body weight) Holsteins were blocked by calving date and fed a common diet (11.5% crude protein, CP). After calving to 25 d in milk (DIM), cows were fed 1 of 4 diets formulated to be (1) 20% deficient in metabolizable protein (MP) based on predicted milk production (17% CP, 24% fNDF), (2) adequate in MP using primarily RUP from soy to increase MP concentration (AMP; 20% CP, 24% fNDF), (3) adequate in MP using a blend of RUP and rumen-protected AA sources to increase MP concentration (Blend; 20% CP, 24% fNDF), or (4) similar to Blend but substituting fNDF with added RUP rather than nonforage neutral detergent fiber (Blend-fNDF; 20% CP, 19% fNDF). The blend was formulated to have a RUP supply with an AA profile similar to that of casein. A common diet (17% CP) was fed from 26 to 92 DIM, and milk production and composition were measured from 26 to 92 DIM, but individual dry matter intake (DMI) was measured only until 50 DIM. During the treatment period for both parities, AMP and Blend increased energy-corrected milk (ECM) yields compared with the diet deficient in MP based on predicted milk production (40.7 vs. 37.8 kg/d) and reduced concentrations of plasma 3-methyl-His (4.1 vs. 5.3 µmol/L) and growth hormone (9.0 vs. 11.9 ng/mL). Blend had greater DMI than AMP (17.4 vs. 16.1 kg/d), but ECM yields were similar. Blend had greater plasma Met (42.0 vs. 26.4 µmol/L) and altered metabolites associated with antioxidant production and methyl donation compared with AMP. Conversely, the concentration of total essential AA in plasma was less in Blend versus AMP (837 vs. 935 µmol/L). In multiparous cows, Blend-fNDF decreased DMI and ECM yield compared with Blend (19.2 vs. 20.1 kg/d of DMI, 45.3 vs. 51.1 kg/d of ECM), whereas primiparous cows showed the opposite response (15.3 vs. 14.6 kg/d of DMI, 32.9 vs. 31.4 kg/d of ECM). Greater DMI for multiparous cows fed Blend carried over from 26 to 50 DIM and was greater compared with AMP (23.1 vs. 21.2 kg /d) and Blend-fNDF (21.3 kg/d). Blend also increased ECM yield compared with AMP (49.2 vs. 43.5 kg/d) and Blend-fNDF (45.4 kg/d) from 26 to 92 DIM. Few carryover effects of fresh cow treatments on production were found in primiparous cows. Overall, feeding blends of RUP and AA may improve the balance of AA for fresh cows fed high MP diets and improve concurrent and longer-term milk production in multiparous cows. However, with high MP diets, multiparous fresh cows require greater concentrations of fNDF than primiparous cows.  相似文献   

12.
Dairy cow efficiency is increasingly important for future breeding decisions. The efficiency is determined mostly by dry matter intake (DMI). Reducing DMI seems to increase efficiency if milk yield remains the same, but resulting negative energy balance (EB) may cause health problems, especially in early lactation. Objectives of this study were to examine relationships between DMI and liability to diseases. Therefore, cow effects for DMI and EB were correlated with cow effects for 4 disease categories throughout lactation. Disease categories were mastitis, claw and leg diseases, metabolic diseases, and all diseases. In addition, this study presents relative percentages of diseased cows per days in milk (DIM), repeatability, and cow effect correlations for disease categories across DIM. A total of 1,370 German Holstein (GH) and 287 Fleckvieh (FV) primiparous and multiparous dairy cows from 12 dairy research farms in Germany were observed over a period of 2 yr. Farm staff and veterinarians recorded health data. We modeled health and production data with threshold random regression models and linear random regression models. From DIM 2 to 305 average daily DMI was 22.1 kg/d in GH and 20.2 kg/d in FV. Average weekly EB was 2.8 MJ of NEL/d in GH and 0.6 MJ of NEL/d in FV. Most diseases occurred in the first 20 DIM. Multiparous cows were more susceptible to diseases than primiparous cows. Relative percentages of diseased cows were highest for claw and leg diseases, followed by metabolic diseases and mastitis. Repeatability of disease categories and production traits was moderate to high. Cow effect correlations for disease categories were higher for adjacent lactation stages than for more distant lactation stages. Pearson correlation coefficients between cow effects for DMI, as well as EB, and disease categories were estimated from DIM 2 to 305. Almost all correlations were negative in GH, especially in early lactation. In FV, the course of correlations was similar to GH, but correlations were mostly more negative in early lactation. For the first 20 DIM, correlations ranged from ?0.31 to 0.00 in GH and from ?0.42 to ?0.01 in FV. The results illustrate that future breeding for dairy cow efficiency should focus on DMI and EB in early lactation to avoid health problems.  相似文献   

13.
High-yielding dairy cows are often fed high proportions of cereal grain and pulses. For several reasons, it would be desirable to replace these feed sources with forage, which is not suitable for human consumption. Feeding large amounts of forage to dairy cows could also make dairy production more publicly acceptable in the future. In this study, we estimated genetic parameters for total dry matter intake (DMI), DMI from forage (DMIFor), energy-corrected milk (ECM), and ECM produced from forage (ECMFor). A total of 1,177 lactations from 575 cows of Swedish Red (SR) and Holstein (HOL) dairy breeds were included in the study. Mixed linear animal random regression models were used, with fixed effect of calving season and lactation week nested within parity 1 and 2+, fixed effect of calving year, and random regression coefficients for breeding value (up to linear) and permanent environmental effect (up to quadratic) of the cow. Heritability for DMI and DMIFor was generally higher for HOL than for SR in all-parity data and in later parities; however, the opposite was true for first parity. Heritability for DMI and DMIFor during the first 8 wk averaged 0.11 and 0.15, respectively, in all-parity data for the 2 breeds. Corresponding values for ECMFor and ECM were 0.21 and 0.29, respectively. In first parity, values were 0.32, 0.36, 0.28, and 0.51, respectively. The genetic correlation between DMI and DMIFor was high, above 0.83, and fairly constant across the lactation. The genetic correlation between ECMFor and ECM was close to unity in the later part of lactation for both breeds, but was around 0.8 in the early lactation for both breeds; it decreased for HOL to 0.54 in wk 17. The genetic correlations between DMI and ECMFor and between DMIFor and ECMFor were low and negative for HOL (absolute value ~0.2–0.3), but changed for SR from weakly positive in early lactation to negative values and back to positive toward the end of lactation. For most traits, the correlation between wk 1 and wk 8 into the lactation was very high; the lowest value was for DMI in HOL at 0.81. The genetic correlation between parities was rather high in the first part of the lactation. During the first 8 wk, the correlation was lower for HOL than for SR, except for ECM. We found that DMIFor and ECMFor showed reasonably large heritability, and future work should explore the possibility of genomic evaluations.  相似文献   

14.
This study evaluated the effects of gradual replacement of a mixture of late-cut grass silage (LS) and barley with early-cut grass silage (ES) on milk production, CH4 emissions, and N utilization in Swedish Red cows. Two grass silages were prepared from the same primary growth of timothy grass sward but harvested 2 wk apart [11.0 and 9.7 MJ of metabolizable energy/kg of dry matter (DM)]. Four diets, fed as a total mixed ration, were formulated to meet the metabolizable energy and protein requirements of 35 kg of energy-corrected milk (ECM) by gradually replacing a mixture of LS and barley with ES (0, 33, 67, and 100% of the forage component of the diet), whereas the proportion of barley decreased from 47.2 to 26.6% of diet DM. Expeller canola meal was used as a protein supplement. Sixteen Swedish Red cows were used in 4 replicated 4 × 4 Latin squares. Cows were offered diets ad libitum and milked twice daily. Each period of 28 d comprised 14 d of diet adaptation followed by 14 d of data collection. Intake and milk yield were recorded daily, and milk samples were collected on d 19 to 21 and d 26 to 28 of each period. Diet digestibility was determined by grab sampling using indigestible neutral detergent fiber as an internal marker. Gas emissions were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD). Dry matter intake (DMI) linearly decreased from 22.6 to 19.3 kg/d as the proportion of ES increased in the diet. The ECM yield did not differ among treatments, but milk protein yield decreased with increasing proportion of ES in the diet. Because of reduced DMI with increasing ES, feed efficiency (ECM/DMI) improved with an increased proportion of ES in the diet. Nitrogen efficiency (milk N/N intake) did not change despite a linear increase in milk urea N concentration from 9.7 (LS alone) to 11.9 mg/dL (ES alone) with graded replacement of LS and barley by ES in the diet. Lower DMI responses in ES diets were partly compensated for by increased organic matter digestibility (656 g/kg of DM for LS alone; 715 g/kg of DM for ES alone) related to improved forage digestibility at early harvesting. Total CH4 emissions and CH4 intensity (CH4/ECM) were not influenced by diet, but CH4 yield (CH4/DMI) increased linearly from 19.5 to 23.0 g/kg of DMI with greater inclusion of ES in the diet. In conclusion, replacing LS and barley with ES improved the conversion of feed to milk without increasing CH4 emissions or compromising N efficiency.  相似文献   

15.
The objective of this experiment was to investigate the effects of a Saccharomyces cerevisiae-based direct-fed microbial product (SDM) and an exogenous enzyme product (ENZ) on enteric methane emission, milk yield and composition, total-tract digestibility of nutrients, ruminal fermentation, and nitrogen excretion and secretion in lactating dairy cows. Eighteen Holstein cows were used in a 3 × 3 Latin square design experiment with three 28-d periods. Treatments were (1) control (no additive), (2) 28 g of SDM/d per cow, or (3) 10 g of ENZ/d per cow. Treatments were top-dressed at the time of feeding. The basal diet consisted of (dry matter basis) 60% forage and 40% concentrates and contained 16.5% crude protein and 32.0% neutral detergent fiber. Treatments had no effect on enteric methane production, yield (methane per kg of dry matter intake, DMI), or intensity (methane per kg of energy-corrected milk yield). Carbon dioxide production was similar among treatments. Compared with control, SDM increased milk yield by 2 kg/d without affecting DMI or feed efficiency. Supplementation of the diet with ENZ did not affect DMI, milk yield, or feed efficiency. Concentrations and yields of milk fat, true protein, and lactose, and energy-corrected milk yield were not different among treatments. Neither SDM nor ENZ had an effect on total-tract digestibility of nutrients or nitrogen excretion and secretion. Concentration of total volatile fatty acids (VFA) in ruminal fluid was increased by both SDM and ENZ, and rumen pH was decreased by SDM compared with the control. At levels similar to the control DMI, the increased concentration of VFA in ruminal fluid of cows receiving SDM suggests an increased postruminal supply of energy and may partly explain the increased milk yield with that treatment. However, it is important to note that milk composition and energy-corrected milk yield were not affected by treatment.  相似文献   

16.
《Journal of dairy science》2023,106(1):452-461
Bovine mastitis is the most commonly diagnosed disease of dairy cows worldwide and causes extensive economic losses to milk producers. Intramammary infection status before dry-off plays a decisive role with respect to udder health and milk yield in the subsequent lactation. The aim of this study was to compare the effect of antibiotic dry cow therapy (DCT) versus no treatment at dry-off on milk yield, somatic cell count (SCC), inflammation of the mammary gland (IMG), and the incidence of clinical mastitis in the subsequent lactation. Dairy herd data from 251 Austrian dairy farms were recorded over an observation period of 12 mo and subsequently analyzed. The data set included 5,018 dairy cows: 2,078 were treated with antibiotics (abDCT group) and 2,940 were not treated (noDCT group) at dry-off. The abDCT group was subdivided, based on the antimicrobial active substances used for drying off, into 4 different groups (penicillins, cloxacillin, cephalosporins, and rifaximin). Based on bacteriological culture results, infections were grouped into those caused by major, minor, and other pathogens. Additionally, the IMG was defined via SCC from milk recording data using a cutoff of 200,000 cells/mL before drying off and after calving. The incidence of clinical mastitis cases within 30 and 90 d in milk was calculated using veterinary diagnosis data. To investigate the effect of different dry cow therapies on the following parameters: milk yield, SCC, and diagnosed clinical mastitis cases, different linear mixed models were constructed. Overall, the abDCT group was determined to have a significantly higher milk yield over 305 d in milk in the subsequent lactation (increase of 6.18%), compared with the noDCT group (increase of 4.29%). Both groups (abDCT and noDCT) demonstrated a decrease in the first SCC after calving compared with the SCC before dry-off, although the treated cows had a significantly higher reduction. Regarding the different antibiotic groups, with exception of the rifaximin treated cows, all antibiotic groups showed a significant difference from not treated cows with respect to SCC. Additionally, we were able to demonstrate that cows with IMG before dry-off had a 2.073 times higher chance of an increased SCC (>200,000 cells/mL) after calving. With respect to the veterinary diagnosis data, neither the IMG before drying off nor the type of DCT had a significant influence on the probability of developing clinical mastitis within 30 or 90 d in milk. Only a small number of treatments was accompanied with a bacteriological examination before drying off. However, the existing data in this study indicates that the intramammary infection status before dry-off in combination with different dry cow treatments influences udder health and milk yield after calving. Nevertheless, further studies with larger data sets of bacteriological examinations are necessary to enable a more in-depth investigation into the effects of different antibiotic substances used for DCT.  相似文献   

17.
《Journal of dairy science》2022,105(8):7036-7046
Mitochondria are central to metabolism and are the primary energy producers for all biosynthesis, including lactation. The objectives of this study were to determine if high- and low-producing dairy cows exhibit differences in peripheral blood mononuclear cell mitochondrial enzyme activities of citrate synthase, complex I, complex IV, and complex V during early lactation and, thus, to determine whether those differences were related to differences in lactation performance in the dairy cow. Fifty-six Holstein cows were assigned to 1 of 4 groups: (1) primiparous high, (2) primiparous low, (3) multiparous high, or (4) multiparous low. Primiparous and multiparous cows were analyzed separately. Then, cows were divided into high or low production groups for each production parameter [peak milk, average milk, energy-corrected milk (ECM), fat-corrected milk (FCM), milk lactose, milk fat, milk protein, total solids (TS), solids-not-fat, feed efficiency, and somatic cell count (SCC)]. For all data analysis, production parameters are expressed as yields (kg/d) and SCC (103 cells/mL). High and low production groups were defined by their respective mean production parameters for the 56 cows, with below average cows defined as low and above average cows defined as high. Whole blood samples were collected at one time point, approximately 70 d in milk at 0800 h, and processed for crude mitochondrial extracts from peripheral blood mononuclear cells to determine the activity rates of mitochondrial enzymes. Milk samples were collected 9 times (3 d, 3 times per d) during the week of blood collection and analyzed for major components (fat, protein, lactose, TS, and SCC). Multiparous cows had lower citrate synthase activity than primiparous cows across all production parameters. High-producing cows had greater complex I activity for peak milk, milk yield, ECM, FCM, milk fat, TS, and feed efficiency, and greater complex V activity for ECM, FCM, milk lactose, milk fat, and TS across parities. These findings imply that the most influential respiratory chain enzymes on the level of milk production are those responsible for electron transport chain initialization and ATP production.  相似文献   

18.
《Journal of dairy science》2022,105(10):8036-8053
The objective of the study was to quantify the effects on dry matter intake (DMI), nutrient digestibility, gas exchange, milk production, and milk quality in dairy cows fed fresh grass harvested at different maturity stages. Sixteen Danish Holstein cows in mid-lactation were divided into 4 blocks and used in 4 incomplete 4 × 2 Latin squares with 2 periods of 21 d. The cows received 1 of 4 treatments in each period, resulting in 8 cows per treatment, as follows: grass-clover silage supplemented with 6 kg/d concentrate pellets (SILc), fresh grass harvested at late maturity stage supplemented with 6 kg/d concentrate pellets (LATc), fresh grass harvested at late maturity stage (LAT), and fresh grass harvested at early maturity stage (ERL). The cows were housed in tiestalls and milked twice daily. The cows had ad libitum access to the forage, and concentrate pellets were divided into equal amounts and fed separately in the morning and afternoon. Fecal samples were collected to determine apparent total-tract digestibility, and samples of rumen fluid were collected for determination of short chain fatty acid composition. Halters were used for measuring eating and rumination time. Gas exchange was measured in open-circuit respiration chambers. Total DMI was higher in LATc and ERL (16.9 ± 0.45 and 15.5 ± 0.39 kg/d, respectively) compared with LAT (14.1 ± 0.42 kg/d). Relative to SILc, cows fed fresh grass experienced a convex pattern in DMI during the experiment. The changes in DMI were related to changes in leaf to stem ratio, fiber concentration, and organic matter digestibility determined in vitro in samples of the fresh grass harvested throughout the experiment. The apparent total-tract digestibility of organic matter was higher in SILc and LAT compared with LATc. Methane yield was lower for LATc compared with LAT (19.5 ± 0.61 vs. 22.6 ± 0.55 g of CH4/kg of DMI), and was not different between LAT and ERL. Compared with LAT, milk yield was higher for ERL (21.1 ± 1.14 vs. 23.4 ± 1.11 kg/d) and energy-corrected milk (ECM) yield was higher for LATc (21.5 ± 0.99 vs. 25.3 ± 1.03 kg/d). We detected no differences in milk or ECM yield between SILc and LATc. Milk protein yield was higher and milk fat concentration was lower in LATc compared with LAT. The fatty acid percentages of ∑C4-C14:1 and ∑C16 in milk were higher for SILc compared with LATc, signifying pronounced de novo synthesis. The n-6:n-3 ratio in milk fatty acids was lower for SILc and LAT compared with LATc, indicating improved nutritional quality for SILc and LAT. However, retinol concentration in milk was lower in SILc compared with all other treatments. The study implies that feeding silage instead of fresh grass has no effect on DMI, ECM yield, or CH4 yield, and that concentrate supplementation can increase milk production, affects milk quality, and reduces the effect on climate, whereas feeding less mature grass increases DMI and milk yield, but has no effect on CH4 yield.  相似文献   

19.
Selective use of antibiotic dry cow treatment can be implemented at the cow or quarter level, with the latter having the potential to further reduce antibiotic use. Our objective was to compare these 2 approaches in 6 herds in the United Kingdom in which environmental mastitis predominated. Eight hundred seven cows were enrolled and categorized as having a high cell count (n = 401) or low cell count (n = 406) in the last 3 mo of lactation and clinical mastitis history. All quarters of all enrolled cows received an internal teat sealant. Within each category, cows were randomly allocated to 1 of 3 groups; in one group antibiotic treatment was allocated at cow level (i.e., all 4 quarters received antibiotic), whereas in the 2 remaining groups antibiotic treatment was allocated at quarter level, based on California Mastitis Test (CMT) findings. Two different thresholds, score 1 and 2, were used to determine likely infection status. Quarter milk samples were collected at dry off and postcalving for bacteriological culture and somatic cell count (SCC). Cows were monitored for clinical mastitis from dry off until 100 d in milk. Cow level SCC and milk yield data were collated from farm records. Within each category, the 2 quarter level treatment groups were compared with cow level treatment at dry off. Leaving quarters untreated with intramammary antibiotic in cows in the high cell count group, with a CMT <2 or <1, reduced antibiotic use by 55% and 31%, respectively, and resulted in no difference in the odds of being infected with any pathogen postcalving, but was associated with a higher SCC at the first test day. Intramammary antibiotic treatment of quarters with a CMT ≥1 in cows in the low cell count category at dry off was not associated with any reduction in the odds of being infected with a major pathogen postcalving but was associated with a decrease in the odds of being infected with a minor mastitis pathogen postcalving. The use of antibiotics in quarters of cows categorized as low cell count at dry off, increased the proportion of quarters treated with antibiotic from 0% at cow level to 31% (CMT ≥ 1) and 12% (CMT ≥ 2) at quarter level, only resulting in a reduction in SCC of around 20,000 cells/mL at the first test day, if all quarters with CMT score ≥1 were treated with antibiotic. No differences in clinical mastitis incidence and milk yield in the first 100 d in milk were detected between any of the treatment groups. These study findings support selective quarter level dry off treatment only in cows with cow level SCC >200,000 cells/mL at dry off.  相似文献   

20.
《Journal of dairy science》2022,105(7):6251-6260
Poor udder health status can have a detrimental effect on milk yield and reproductive performance, leading to reductions in the dairy farm profit. The objective of this retrospective longitudinal study was to assess the associations of somatic cell count (SCC) with daily milk yield and reproductive performance. A database with 1,930,376 lactations from 867 Argentinean grazing dairy herds records collected for 14 years was used. The association of the evolution of SCC (healthy vs. new case vs. cured vs. chronic; with 150,000 SCC/mL as threshold) and of the severity of SCC [mild (150,000­–400,000 SCC/mL) vs. moderate (400,000–1,000,000 SCC/mL) vs. severe (>1,000,000 SCC/mL)] with the odds for conception were estimated. Finally, the associations of the linear score of SCC (LS-SCC) with daily milk yield were estimated depending on parity and milk production quartile. The odds ratios (CI 95%) for conception at first service were 0.921 (0.902–0.941), 0.866 (0.848–0.884), and 0.842 (0.826–0.859) for the new case, cured, and chronic cows compared with healthy cows, respectively. Also, the odds ratios (CI 95%) for conception were 0.902 (0.881–0.925), 0.837 (0.808–0.866) and 0.709 (0.683–0.736) for mild, moderate and severe cases compared with healthy cows, respectively. An increase of one point of LS-SCC was associated with decreases of 0.349, 0.539, and 0.676 kg in daily milk yield for first-, second-, and third-lactation cows, respectively. In conclusion, SCC is negatively associated with the risk for conception and with daily milk yield in grazing dairy cows. This negative relationship with conception is higher when SCC increase occurs after the service date and it is influenced by severity of mastitis, and in the case of milk yield, the negative association is influenced by parity, milk production quartile, and severity of mastitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号