首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
2.
3.
The experiment was conducted to determine the role of nuclear factor (erythroid-derived 2)-like factor 2 (NFE2L2, formerly Nrf2) antioxidant response element (ARE) pathway in protecting bovine mammary epithelial cells (BMEC) against H2O2-induced oxidative stress injury. An NFE2L2 small interfering RNA (siRNA) interference or a pCMV6-XL5-NFE2L2 plasmid fragment was transfected to independently downregulate or upregulate expression of NFE2L2. Isolated BMEC in triplicate were exposed to H2O2 (600 μM) for 6 h to induce oxidative stress before transient transfection with scrambled siRNA, NFE2L2-siRNA, pCMV6-XL5, and pCMV6-XL5-NFE2L2. Cell proliferation, apoptosis and necrosis rates, antioxidant enzyme activities, reactive oxygen species (ROS) and malondialdehyde (MDA) production, protein and mRNA expression of NFE2L2 and downstream target genes, and fluorescence activity of ARE were measured. The results revealed that compared with the control, BMEC transfected with NFE2L2-siRNA3 had proliferation rates that were 9 or 65% lower without or with H2O2, respectively. These cells also had apoptosis and necrosis rates that were 27 and 3.5 times greater with H2O2 compared with the control group, respectively. In contrast, transfected pCMV6-XL5-NFE2L2 had proliferation rates that were 64.3% greater or 17% lower without or with H2O2 compared with the control group, respectively. Apoptosis rates were 1.8 times lower with H2O2 compared with the control. In addition, compared with the control, production of ROS and MDA and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione-S-transferase (GST) increased markedly in cells transfected with pCMV6-XL5-NFE2L2 and without H2O2. However, compared with the control, production of ROS and MDA and activity of CAT and GSH-Px increased markedly, whereas activities of SOD and GST decreased in cells transfected with pCMV6-XL5-NFE2L2 and incubated with H2O2. Compared with the control, cells transfected with NFE2L2-siRNA3 with or without H2O2 had lower production of ROS and MDA and activity of SOD, CAT, GSH-Px, and GST. Cells transfected with pCMV6-XL5-NFE2L2 with or without H2O2 had markedly higher protein and mRNA expression of NFE2L2, heme oxygenase-1 (HMOX-1), NADH quinone oxidoreductase 1, glutamate cysteine ligase catalytic subunit, and glutamyl cystine ligase modulatory subunit compared with the control incubations. Cells transfected with NFE2L2-siRNA3 without or with H2O2 had markedly lower protein and mRNA expression of NFE2L2, HMOX-1, NADH quinone oxidoreductase 1, glutamyl cystine ligase modulatory subunit, and glutamate-cysteine ligase catalytic subunit compared with the control incubations. In addition, expression of HMOX-1 was 5.3-fold greater with H2O2 compared with the control. Overall, results indicate that NFE2L2 plays an important role in the NFE2L2-ARE pathway via the control of HMOX-1. The relevant mechanisms in vivo merit further study.  相似文献   

4.
5.
The incidence and severity of mastitis can be high during the period of transition from pregnancy to lactation when dairy cattle are susceptible to oxidative stress. Oxidative stress may contribute to the pathogenesis of mastitis by modifying the expression of proinflammatory genes. The overall goal of this study was to determine the relationship between critical antioxidant defense mechanisms and proinflammatory markers in normal bovine mammary tissue during the periparturient period. Mammary tissue samples were obtained from 12 cows at 35, 20, and 7 d before expected calving and during early lactation (EL, 15 to 28 d in milk). Enzyme activities for cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase were relatively low during the dry period, but increased during EL, whereas activity of thioredoxin reductase 1 did not change significantly as a function of time. In contrast, gene expression for these antioxidant selenoproteins and for heme oxygenase-1 gradually decreased as parturition approached and then increased during EL. The expression of intercellular vascular adhesion molecule-1 and vascular cell adhesion molecule-1 followed a similar trend where mRNA abundance gradually declined as parturition approached with a slight rebound in EL. Gene expression of the pro-oxidant, 15-lipoxygenase 1, which is known to increase during times of oxidative stress, also increased dramatically in mammary tissue from EL cows. Expression of the proinflammatory cytokines, IL-1β, IL-6, and IL-8 did not change significantly during the periparturient period. Strong positive correlations were found between several antioxidant enzymes (cytosolic glutathione peroxidase, thioredoxin reductase 1, and heme oxygenase-1) and vascular adhesion molecules (intercellular vascular adhesion molecule-1, vascular cell adhesion molecule-1) suggesting a protective response of these antioxidants to an enhanced proinflammatory state. Ability to control oxidative stress through manipulation of key antioxidant enzymes in the future may modify the proinflammatory state of periparturient cows and reduce incidence and severity of some diseases such as mastitis.  相似文献   

6.
7.
Polymorphonuclear leukocytes (PMNL) are the first responders upon pathogen invasion and hence play an important role in inflammatory and immune responses. Rumen-protected methionine (MET) and choline (CHOL) during the peripartal period affect the immune response and inflammatory status in dairy cows to different extents. We aimed to examine the effect of MET and CHOL supply on expression of genes regulating key PMNL functions and associations with whole-blood immune challenge. Thirty multiparous Holstein cows from a larger cohort randomly assigned from ?21 to 30 d relative to parturition to a basal control (CON) diet, CON plus MET at a rate of 0.08% of dry matter, or CON plus CHOL at 60 g/d were used. Blood was sampled at ?10, 7, and 30 d relative to parturition for inflammatory biomarker analyses and PMNL isolation. Neutrophil and monocyte phagocytosis and oxidative burst in vitro were assessed in whole blood at 1, 7, and 28 d. Although neutrophil and monocyte phagocytosis did not differ, oxidative burst in neutrophils and monocytes was greater in MET-supplemented cows relative to CON cows. Compared with CON, PMNL adhesion and migration-related genes (ITGAM, ITGB2, ITGA4) were downregulated in response to MET and CHOL. Expression of CADM1 and SELL was also lower in MET-supplemented cows compared with CON cows but not in CHOL cows. In contrast, compared with CON cows, the expression of ICAM1 was lower in CHOL but not MET cows. Similar to adhesion and migration-related genes, cows receiving MET- or CHOL-supplemented diets had lower expression of inflammation-related genes (IL1β, IL10RA, NFKB1, STAT3, TLR2). However, expression of IRAK1 and TLR4 was lower in MET- but not CHOL-supplemented cows. Plasma taurine concentration was greater in MET cows compared with CHOL and CON cows, suggesting a better redox status in plasma. In agreement with plasma taurine, oxidative stress-related genes (CBS, CTH, GPX1, GSS, SOD2) in PMNL were lower in response to MET and to CHOL supply. Overall, immunometabolic gene expression profile and blood biomarker analyses suggest an overall better redox status in PMNL during the transition period in response to MET and CHOL supply. These adaptations in PMNL might be beneficial for mounting a better bactericidal response upon challenge.  相似文献   

8.
9.
This study was aimed to evaluate the effects of pre-slaughter low-current/high-frequency (LH) electrical stunning (ES) on lipid oxidative stability, antioxidant enzyme activity and gene expression of mitogen-activated protein kinase/nuclear factor erythroid 2-related factor 2 (MAPK/Nrf2) signalling pathway in thigh muscle of broilers. Eighteen birds were randomly allocated to the following three treatments with six replicates per treatment and one bird per replicate: without stunning (control); water-bath ES with sinusoidal alternating LH (86 mA, 1000 Hz, LHES) or high current/low frequency (HL) (130 mA, 60 Hz, HLES). Stunning methods did not affect malondialdehyde level (d 0 ~ d 9) or antioxidant enzymes’ activity at d 0 ~ d 2. LHES enhanced glutathione S-transferase activity at d 3 and gene expression of MAPKs and Nrf2 compared with HLES. In conclusion, LHES enhanced gene expression of MAPK/Nrf2 pathway, whereas had no superiority over HLES in lipid oxidative stability (4 °C, 9 days) of thigh muscle in broilers.  相似文献   

10.
Mammary ductal morphogenesis during prepuberty occurs mainly in response to insulin-like growth factor-1 (IGF-1) and estradiol stimulation. Dairy heifers infected with gastrointestinal nematodes have reduced IGF-1 levels, accompanied by reduced growth rate, delayed puberty onset, and lower parenchyma-stroma relationship in their mammary glands. Immunohistochemical studies were undertaken to determine variations in cell division rate, IGF-1 system components, and estradiol receptors (ESR) during peripubertal development in the mammary glands of antiparasitic-treated and untreated Holstein heifers naturally infected with gastrointestinal nematodes. Mammary biopsies were taken at 20, 30, 40, and 70 wk of age. Proliferating cell nuclear antigen immunolabeling, evident in nuclei, tended to be higher in the parenchyma of the glands from treated heifers than in those from untreated. Insulin-like growth factor binding proteins (IGFBP) type 2 and type 3 immunolabeling was cytoplasmic and was evident in stroma and parenchyma. The IGFBP2-labeled area was lower in treated than in untreated heifers. In the treated group, a maximal expression of this protein was seen at 40 wk of age, whereas in the untreated group the labeling remained constant. No differences were observed for IGFBP3 between treatment groups or during development. Immunolabeling for α ESR (ESR1) was evident in parenchymal nuclei and was higher in treated than in untreated heifers. In the treated group, ESR1 peaked at 30 wk of age and then decreased. These results demonstrate that the parasite burden in young heifers negatively influence mammary gland development, affecting cell division rate and parameters related to estradiol and IGF-1 signaling in the gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号