首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study was undertaken to determine the magnesium ion biosorption ability of the C. utilis and S. cerevisiae yeast species during cultivation in model media supplemented with magnesium. The mannoprotein and β-glucan content in the investigated yeast cell wall were analyzed because of the essential function of yeast cell wall structural components in metal ion binding. At the same time, an observation of yeast cells with the use of a transmission electron microscopy (TEM) was performed. The S. cerevisiae No. 1 yeast demonstrated the largest magnesium cation biosorption capacity. The magnesium content in biomass of S. cerevisiae No. 1 was about 16 mg Mg2+/g of dry substance after living cell incubation in MgSO4 solution and about 18 mg Mg2+/g of dry substance after pasteurized biomass incubation in YPD medium supplemented with magnesium ions. The tested yeast strains differed in mannoprotein and β-glucan content in the cell wall. The cell wall of S. cerevisiae 102, coming from YPD + Mg2+ medium, contained the greatest amount of glycoproteins (approx. 66 % adjusted to a total sugar basis). The cell wall of C. utilis ATTC 9950 yeast incubated under the same conditions was composed mainly of β-glucans (approx. 78 %) with prevailing β-(1,6)-glucans in this glucose polymer fraction (approx. 53 %). In S. cerevisiae No. 1 and C. utilis yeasts, higher degrees of magnesium ion binding were observed in the presence of higher β-glucan content in the cell wall structure, whereas in S. cerevisiae, 102 cells the magnesium ion adsorption was determined mainly on the grounds of mannoprotein presence. The process of yeast cell pasteurization increased the magnesium ion binding ability in the tested fungi strains as a result of cell wall structure loosening.  相似文献   

2.
In the present study, we have investigated the occurrence of yeast flora during tapping and fermentation of palm wine from Cameroon. The yeast diversity was investigated using both traditional culture-dependent and culture-independent methods. Moreover, to characterize the isolates of the predominant yeast species (Saccharomyces cerevisiae) at the strain level, primers specific for δ sequences and minisatellites of genes encoding the cell wall were used. The results confirm the broad quantitative presence of yeast, lactic acid bacteria and acetic acid bacteria during the palm wine tapping process, and highlight a reduced diversity of yeast species using both dependent and independent methods. Together with the predominant species S. cerevisiae, during the tapping of the palm wine the other species found were Saccharomycodes ludwigii and Zygosaccharomyces bailii. In addition, denaturing gradient gel electrophoresis (DGGE) analysis detected Hanseniaspora uvarum, Candida parapsilopsis, Candida fermentati and Pichia fermentans. In contrast to the progressive simplification of yeast diversity at the species level, the molecular characterization of the S. cerevisiae isolates at the strain level showed a wide intraspecies biodiversity during the different steps of the tapping process. Indeed, 15 different biotypes were detected using a combination of three primer pairs, which were well distributed in all of the samples collected during the tapping process, indicating that a multistarter fermentation takes place in this particular natural, semi-continuous fermentation process.  相似文献   

3.
4.
《Journal of dairy science》2021,104(10):11135-11146
Toll-like receptor 4 (TLR4) is a pattern-recognition receptor involved in the recognition of microbial pathogens and host alarmins. Ligation to TLR4 initiates a signaling cascade that leads to inflammation. Polymorphisms in bovine TLR4 have been associated with Mycobacterium avium ssp. paratuberculosis (MAP) susceptibility and resistance, the cause of Johne's disease, and milk somatic cell score, a biomarker of mastitis. Although the contribution of TLR4 to recognition of bacterial lipopolysaccharide (LPS) has been well characterized, its role in MAP recognition is less certain. Clustered regularly interspaced short palindromic repeats–Cas9 mediated gene editing was performed to generate TLR4 knockout (KO) mammary epithelial cells to determine if TLR4 expression is involved in the initiation of the host inflammatory response to MAP cell lysate (5 and 10 µg/mL) and Escherichia coli LPS (5 µg/mL). The absence of TLR4 in KO cells resulted in enhanced expression of key inflammatory genes (TNFA and IL6), anti-inflammatory genes (IL10 and SOCS3), and supernatant cytokine and chemokine levels (TNF-α, IL-6, IL-10, CCL3) in response to the MAP cell lysate (10 µg/mL). However, in response to LPS, the KO cells showed reduced expression of key inflammatory genes (TNFA, IL1A, IL1B, and IL6) and supernatant cytokine levels (TNF-α, IL-6, CCL2, IL-8) as compared with unedited cells. Overall, these results confirm that TLR4 is essential for eliciting inflammation in response to LPS; however, exacerbated gene and protein expression in TLR4 KO cells in response to MAP cell lysate suggests a different mechanism of infection and host response for MAP, at least in terms of how it interacts with TLR4. These novel findings show potential divergent roles for TLR4 in mycobacterial infections, and this may have important consequences for the therapeutic control of inflammation in cattle.  相似文献   

5.
The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics.  相似文献   

6.
Persimmon (Diospyros kaki) is a seasonal fruit with important health benefits. In this study, persimmon use in wine and condiment production was investigated using molecular methods to identify the yeast and acetic acid bacteria (AAB) isolated from the alcoholic fermentation and acetification of the fruit. Alcoholic fermentation was allowed to occur either spontaneously, or by inoculation with a commercial Saccharomyces cerevisiae wine strain, while acetification was always spontaneous; all these processes were performed in triplicates. Non-Saccharomyces yeast species were particularly abundant during the initial and mid-alcoholic fermentation stages, but S. cerevisiae became dominant toward the end of these processes. During spontaneous fermentation, S. cerevisiae Sc1 was the predominant strain isolated throughout, while the commercial strain of S. cerevisiae was the most common strain isolated from the inoculated fermentations. The main non-Saccharomyces strains isolated included Pichia guilliermondii, Hanseniaspora uvarum, Zygosaccharomyces florentinus and Cryptococcus sp. A distinct succession of AAB was observed during the acetification process. Acetobacter malorun was abundant during the initial and mid-stages, while Gluconacetobacter saccharivorans was the main species during the final stages of these acetifications. Four additional AAB species, Acetobacter pasteurianus, Acetobacter syzygii, Gluconacetobacter intermedius and Gluconacetobacter europaeus, were also detected. We observed 28 different AAB genotypes, though only 6 of these were present in high numbers (between 25%–60%), resulting in a high biodiversity index.  相似文献   

7.
This paper analyses yeast diversity and dynamics during the production of Asturian cider. Yeasts were isolated from apple juice and at different stages of fermentation in a cellar in Villaviciosa during two Asturian cider-apple harvests. The species identified by ITS-RFLP corresponded to Hanseniaspora valbyensis, Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia guilliermondii, Candida parapsilosis, Saccharomyces cerevisiae and Saccharomyces bayanus/Saccharomyces pastorianus/Saccharomyces kudriavzevii/Saccharomyces mikatae. The species C. parapsilosis is reported here for the first time in cider. The analysis of Saccharomyces mtDNA patterns showed great diversity, sequential substitution and the presence of a small number of yeast patterns (up to 8), present in both harvests. Killer (patterns nos. 22′ and 47), sensitive (patterns nos. 12, 15, 33 and 61) and neutral phenotypes were found among the S. cerevisiae isolates. The detection of β-glucosidase activity, with arbutin as the sole carbon source, allowed two S. cerevisiae strains (patterns nos. 3′ and 19′) to be differentiated by means of this enzymatic activity. Yeast strains producing the killer toxin or with β-glucosidase activity are reported for the first time in autochthonous cider yeasts.  相似文献   

8.
A high concentration of indole has been linked to ‘plastic-like’ off-flavour in wines, predominantly in wines produced under sluggish fermentation conditions. The purpose of this study was to determine the ability of yeast and bacteria to form indole and whether tryptophan was required for indole accumulation during winemaking. Wine-associated yeast and bacteria species (Saccharomyces cerevisiae, Saccharomyces bayanus, Candida stellata, Hanseniaspora uvarum, Kluyveromyces thermoloterans, Oenococcus oeni, Lactobacillus lindneri, Pediococcus cerevisiae and Pediococcus parvulus) were screened for their potential to generate indole during alcoholic or malolactic fermentation. Tryptophan was required for the accumulation of indole in chemically defined medium, and all yeast and bacteria fermentations were able to accumulate indole. C. stellata showed the greatest potential for indole formation (1033 μg/L) and among the bacteria, the highest concentration was generated by L. lindneri (370 μg/L). Whether primary fermentation is the principle cause of indole formation remains to be determined. We hypothesise that during an efficient fermentation, indole is removed through catabolic metabolism, but, when a sluggish fermentation arises, non-Saccharomyces species might produce excess indole that is still present by end of fermentation.  相似文献   

9.
This work explores the ability of different yeast strains from different species of the genus Saccharomyces (S. cerevisiae, S. uvarum and S. kudriavzevii) and hybrids between these species to release or form varietal aroma compounds from fractions of grape odourless precursors. The de novo synthesis by the yeasts of some of the varietal aroma compounds was also evaluated. The study has shown that de novo synthesis affects some lipid derivatives, shikimic derivatives and terpenes in all species and hybrids, with some remarkable differences amongst them. The release or formation of aroma compounds from precursors was found to be strongly linked to the yeast or hybrid used, and the triple hybrid S. cerevisiae × S. bayanus × S. kudriavzevii in particular and secondarily the hybrid S. cerevisiae × S. bayanus were highly efficient in the production of most varietal aroma compounds, including γ-lactones, benzenoids, volatile phenols, vanillin derivatives and terpenols. The presence of precursors in the fermenting media caused a surprising levelling effect on the fermentative aroma composition. Altogether, these results suggest that it is possible to modulate wine aroma by employing different yeast species in order to create new wines with different aromatic notes.  相似文献   

10.
Ripe olives account for ca. 30% of the world's table olive production. Fruits intended for this type of product are preserved in an aqueous solution (acidic water or brine) for several months, where they may undergo a spontaneous fermentation. Enterobacteriaceae and lactic acid bacteria were not detected in the present survey during storage. Thus, the work focused on studying the yeast microflora associated with the ripe olive storage of Manzanilla and Hojiblanca cultivars in acidified brines. A total of 90 yeast isolates were identified by means of molecular methods using RFLP analysis of the 5.8S-ITS rDNA region and sequencing of the D1/D2 domains of the 26S rDNA gene. The two most important species identified in both cultivars were Saccharomyces cerevisiae and Pichia galeiformis, which were present throughout the storage period, while Candida boidinii was detected during the later stages of the process. The species Pichia membranifaciens was detected only in the early stages of the Hojiblanca cultivar. The lipase assays performed with both extracellular and whole cell fractions of the yeast isolates showed that neither of the S. cerevisiae and P. galeiformis species had lipase activity, while the P. membranifaciens isolates showed a weak activity. On the contrary, all C. boidinii isolates gave a strong lipase activity. Change in olive fat acidity was markedly higher in the presence of the yeast population than in sterile storage, indicating that lipases produced by these microorganisms modify the characteristics of the fat in the fruit.  相似文献   

11.
12.
The objective of this study was to identify species of yeasts in samples of high moisture corn (HMC) and corn silage (CS) collected from farms throughout the United States. Samples were plated and colonies were isolated for identification using DNA analysis. Randomly selected colonies were also identified by fatty acid methyl esters (FAME) and by physiological substrate profiling (ID 32C). For CS, Candida ethanolica, Saccharomyces bulderi, Pichia anomala, Kazachstania unispora, and Saccharomyces cerevisiae were the predominant yeasts. Pichia anomala, Issatchenkia orientalis, S. cerevisiae, and Pichia fermentans were the prevalent species in HMC. The 3 identification methods were in agreement at the species level for 16.6% of the isolates and showed no agreement for 25.7%. Agreement in species identification between ID 32C and DNA analysis, FAME and ID 32C, and FAME and DNA analysis was 41.1, 14.4, and 2.2%, respectively. Pichia anomala and I. orientalis were able to grow on lactic acid, whereas S. cerevisiae metabolized sugars (galactose, sucrose, and glucose) but failed to use lactic acid. The yeast diversity in CS and HMC varied due to type of feed and location. Differences in species assignments were seen among methods, but identification using substrate profiling generally corresponded with that based on DNA analysis. These findings provide information about the species that may be expected in silages, and this knowledge may lead to interventions that control unwanted yeasts.  相似文献   

13.
14.
《Food microbiology》2005,22(4):293-300
The growth dynamics of three non-Saccharomyces strains in combination with Saccharomyces cerevisiae during fermentation of a sterile grape juice have been studied. The influence of the initial concentrations of S. cerevisiae on the whole yeast community was the main purpose of this research. The progression of S. cerevisiae within the first 5 days of fermentation was monitored by enumeration on selective and non-selective media. The population of each species was evaluated by morphological criteria. After 24 h, Hanseniaspora uvarum represented more than 50% of the whole yeast community, including ferments with the highest initial concentration of S. cerevisiae. As the population of S. cerevisiae increased, H. uvarum decreased. Metchnikowia pulcherrima was more inhibited by S. cerevisiae than H. uvarum, whereas the growth of Candida stellata was less inhibited. After thirty days, irrespective of the initial concentration of S. cerevisiae, only S. cerevisiae was detected in all ferments. Conversion of sugars to ethanol correlated with the initial population of S. cerevisiae. Glucose was almost completely exhausted in all cases, independent of the initial S. cerevisiae concentration used. Grape juices inoculated with composite inocula of non-S. cerevisiae and S. cerevisiae, with its initial concentration lower than 5 cfu/ml did not produce wines according to wine regulations. The concentration of ethanol in the wines did not reach the minimum amount of 9 vol%. Samples of wines fermented with a composite inoculum the concentration of S. cerevisiae represented 50 cfu/ml of grape juice, were judged to have the best sensorial properties.  相似文献   

15.
In recent years, there has been an increasing interest in identifying and characterizing the yeast populations associated with diverse types of table olive elaborations because of the many desirable technological properties of these microorganisms. In this work, a total of 199 yeast isolates were directly obtained from industrial green table olive fermentations and genetically identified by means of a RFLP analysis of the 5.8S-ITS region and sequencing of the D1/D2 domains of the 26S rDNA gene. Candida diddensiae, Saccharomyces cerevisiae and Pichia membranifaciens were the most abundant yeast species isolated from directly brined Aloreña olives, while for Gordal and Manzanilla cultivars they were Candida tropicalis, Pichia galeiformis and Wickerhamomyces anomalus. In the case of Gordal and Manzanilla green olives processed according to the Spanish style, the predominant yeasts were Debaryomyces etchellsii, C. tropicalis, P. galeiformis and Kluyveromyces lactis. Biochemical activities of technological interest were then qualitatively determined for isolates belonging to all yeast species. This preliminary screening identified two isolates of W. anomalus with interesting properties, such as a strong β-glucosidase and esterase activity, and a moderate catalase and lipolytic activity, which were also confirmed by quantitative assays. The results obtained in this survey show the potential use that some yeast species could have as starters, alone or in combination with lactic acid bacteria, during olive processing.  相似文献   

16.
Yeasts are the most important group of microorganisms contributing to liquor quality in the solid-state fermentation process of Chinese Maotai-flavor liquor. There occurred a complex yeast community structure during this process, including stages of Daqu (the starter) making, stacking fermentation on the ground and liquor fermentation in the pits. In the Daqu making stage, few yeast strains accumulated. However, the stacking fermentation stage accumulated nine yeast species with different physio-biochemical characteristics. But only four species kept dominant until liquor fermentation, which were Zygosaccharomyces bailii, Saccharomyces cerevisiae, Pichia membranifaciens, and Schizosaccharomyces pombe, implying their important functions in liquor making. The four species tended to inhabit in different locations of the stack and pits during stacking and liquor fermentation, due to the condition heterogeneity of the solid-state fermentation, including the different fermentation temperature profiles and oxygen density in different locations. Moreover, yeast population was much larger in the upper layer than that in the middle and bottom layers in liquor fermentation, which was in accordance with the profile of reducing sugar consumption and ethanol production. This was a systematical investigation of yeast community structure dynamics in the Maotai-flavor liquor fermentation process. It would be of help to understand the fermentative mechanism in solid-state fermentation for Maotai-flavor liquor.  相似文献   

17.
Infection of mammary gland cells with bacterial pathogens begins with adhesion, invasion, and persistence within the cells or systemic distribution. Some bacteria, such as Escherichia coli, are known to causes bovine mastitis, resulting in acute proinflammatory responses in the mammary tissue. Mycobacterium avium ssp. paratuberculosis (MAP), the etiological agent of paratuberculosis, is able to spread to distant organs after crossing intestinal cells, reaching the mammary gland and potentially being released in milk, infecting calves during suckling. Its exit from systemic sites may be influenced by preexisting inflammation such as that caused by E. coli mastitis. Interactions between E. coli and MAP in mammary epithelial cells have not yet been described. In this study, we posited that E. coli-infected bovine mammary epithelial cells would facilitate baso-apical translocation of MAP in an ex vivo model. We showed that the presence of E. coli in a bovine mammary epithelial cell line (MAC-T) increased baso-apical translocation of MAP to the apical side of the cells. Levels were significantly higher 30 min post-infection and decreased at 120 min post-infection. Cells previously infected with E. coli and MAP or with E. coli alone showed a significant increase in IL1B mRNA expression at 120 min. We detected no significant expression of p38 mitogen-activated protein kinase (mapkp38) or IL10, regardless of treatment. Thereby, the presence of E. coli in MAC-T cells alters the translocation of MAP through epithelial cells, enabling its rapid translocation to the cellular surface. Expression of IL1B was shown to influence the apical-basal translocation of MAP at 120 min. Findings from the current study suggest that MAP translocation into milk is likely enhanced by inflammatory states such as those induced during E. coli mastitis. This is the first report demonstrating the effect of E. coli under MAP coinfection in bovine mammary epithelial cells under experimental conditions.  相似文献   

18.
19.
The effect of simultaneous or sequential inoculation of Hanseniaspora vineae CECT 1471 and Saccharomyces cerevisiae T73 in non-sterile must on 2-phenylethyl acetate production has been examined. In both treatments tested, no significant differences in Saccharomyces yeast growth were found, whereas non-Saccharomyces yeast growth was significantly different during all days of fermentation. Independently of the type of inoculation, S. cerevisiae was the predominant species from day 3 till the end of the fermentation. The dynamics of indigenous and inoculated yeast populations showed H. vineae to be the predominant non-Saccharomyces species at the beginning of fermentation in sequentially inoculated wines, whereas the simultaneous inoculation of S. cerevisiae did not permit any non-Saccharomyces species to become predominant. Differences found in non-Saccharomyces yeast growth in both fermentations influenced the analytical profiles of final wines and specifically 2-phenylethyl acetate concentration which was two-fold increased in sequentially inoculated wines in comparison to those co-inoculated. In conclusion we have shown that H. vineae inoculated as part of a sequential mixed starter is able to compete with native yeasts present in non-sterile must and modify the wine aroma profile.  相似文献   

20.
The yeast microbiota associated with naturally fermented and inoculated green table olives, differently treated in the field with non-conventional repellent and antiovipositional products in the control of Bactrocera oleae, was analysed using a combination of culture-dependent and -independent molecular fingerprinting. The routine yeast isolation gave rise to 118 strains, whose identification was performed by PCR-RFLP of the internal transcribed spacer (ITS) regions. Total DNA was extracted directly from the brine throughout fermentation by means of an experimental protocol that included the removal of Taq polymerase inhibitors. Denaturing Gradient Gel Electrophoresis (DGGE) of 26S rRNA gene PCR amplicons highlighted the yeast community. Comparison of both culture-dependent and independent methods indicated that the yeast species Saccharomyces cerevisiae, Wickerhamomyces anomalus, Candida diddensiae and Issatchenkia orientalis were dominant during fermentation despite the addition of the Lactobacillus plantarum starter used in brining. The resultant isolated species were unaffected by treatments in field, except for C. diddensiae whose growth was delayed by kaolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号