首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of increased dietary energy and protein on the composition and functional capacities of blood mononuclear leukocyte populations from milk replacer-fed calves were investigated. Holstein bull calves (average age: 4.2 d; n = 19) were assigned randomly to one of two treatment groups. Treatment 1 calves (n = 9) were fed a 20% crude protein, 20% fat milk replacer at a rate of 1.4% body weight of dry matter/d for 8 wk, whereas treatment 2 calves (n = 10) were fed a 30% crude protein, 20% fat milk replacer at a rate of 2.5% body weight of dry matter per day. Composition and functional capacities of mononuclear leukocyte populations from blood samples collected at 4, 18, 32, 46, and 60 d of age were characterized by flow cytometry and ex vivo cell function assays. From 11 to 60 d of age, the mean daily weight gain of treatment 2 calves (1.20 kg/d) was greater than daily weight gain of treatment 1 calves (0.55 kg/d). At 60 d of age, the mean body weight of treatment two calves was 53% (39 kg) greater than the mean body weight of treatment 1 calves. Total numbers of blood leukocytes and the composition of the mononuclear leukocyte population were unaffected by the plane of nutrition. Mitogen-induced DNA-synthesis and immunoglobulin M secretion also were unaffected by dietary treatment. Blood mononuclear leukocytes from calves on intensified diets, however, produced less interferon-gamma and more inducible nitric oxide, suggesting that increased dietary energy and protein affects specific aspects of leukocyte function associated with cell-mediated immunity. The impact of altered interferon-gamma and NO production on the calf s susceptibility to infectious disease are not known. Mononuclear leukocyte populations from all calves also demonstrated age-related changes in composition and functional capacity, likely reflecting natural exposure to infectious agents and maturation of the calfs immune system.  相似文献   

2.
Sixty calves were assigned to a comparative slaughter study to determine the changes in composition of milk replacer-fed Holstein bull calves from birth to 105-kg body weight (BW). Six calves were slaughtered on day of birth and served as a baseline for comparison of compositional changes. Fifty-four calves were assigned to one of three treatments (18 calves per treatment). Calves were fed milk replacer containing 30% crude protein (CP) and 20% fat. Target growth rates for treatments 1, 2, and 3 were 500, 950, and 1400 g/d, respectively. Six calves from each treatment were slaughtered and analyzed for energy, nitrogen, ether extract, and ash when they reached 65, 85 and 105 kg of BW. Actual daily gains from birth to slaughter were 560, 973, and 1100 g, and net deposition of CP and fat were 140 and 44, 204 and 154, and 247 and 161 g/d for treatments 1, 2, and 3, respectively. Results were used to develop equations to predict retained energy [retained energy = (empty BW(0.223)) x (empty BW gain(1.32))], and retained protein, [retained protein = (184 x empty BW gain (kilograms/d)) + (17.2 x (retained energy)/empty BW gain] where retained energy is in Mcal/d, retained protein is in g/d, and empty BW and gain are in kilograms. The composition of gain observed was compared to predictions from the 1989 Dairy NRC and 1996 Beef NRC equations and demonstrated the equations do not represent the composition of gain in calves of this weight.  相似文献   

3.
The objective was to quantify the energy and protein nutritional requirements of Holstein × Gyr crossbred preweaned dairy calves until 64 d of age. Thirty-nine Holstein × Gyr crossbred male calves with an average initial live weight (mean ± SEM; for all next values) of 36 ± 1.0 kg were used. Five calves were slaughtered at 4 d of life to estimate the animals' initial body composition (reference group). The remaining 34 calves were distributed in a completely randomized design in a 3 × 2 factorial arrangement consisting of 3 levels of milk (2, 4, or 8 L/d) and 2 levels of starter feed (presence or absence in diet). At 15 and 45 d of life, 4 animals from each treatment were subjected to digestibility trials with total collection of feces (for 72 h) and urine (for 24 h). At 64 d of age, all animals were slaughtered, their gastro-intestinal tract was washed to determine the empty body weight (EBW; kg), and their body tissues were sampled for subsequent analyses. The net energy requirement for maintenance was estimated using an exponential regression between metabolizable energy intake and heat production (both in Mcal/EBW0.75 per d) and was 74.3 ± 5.7 kcal/EBW0.75 per d, and was not affected by inclusion of starter feed in the diet. The metabolizable energy requirement for maintenance was determined at the point of zero energy retention in the body and was 105.2 ± 5.8 kcal/EBW0.75 per d. The net energy for gain was estimated using the EBW and the empty body gain (EBG; kg/d) as 0.0882 ± 0.0028 × EBW0.75 × EBG0.9050±0.0706. The metabolizable energy efficiency for gain (kg) of the milk was 57.4 ± 3.45%, and the kg of the starter feed was 39.3 ± 2.09%. The metabolizable protein requirement for maintenance was 3.52 ± 0.34 g/BW0.75 per d. The net protein required for each kilogram gained was estimated as 119.1 ± 32.9 × EBW0.0663±0.059. The metabolizable protein efficiency for gain was 77 ± 8.5% and was not affected by inclusion of starter feed in the diet. In conclusion, the energy efficiency for gain of milk is higher than that of starter and the net protein required per unit protein gain increases with empty body weight.  相似文献   

4.
The AA requirements of herd-replacement calves less than 5 wk old and fed milk replacers are not clearly defined and have been estimated in a limited number of studies using milk-fed calves ranging from 5 to 20 wk of age. The objective of these 4 studies was to investigate the effect of supplementing milk replacers containing 24 to 28% crude protein (CP; from milk sources) and 17% fat with Lys, Met, and Thr to estimate the optimum requirements for calves less than 5 wk of age. Holstein bull calves (initially 3 and 4 d old, 43 ± 1 kg of body weight, BW) were fed an 18% CP (as-fed) starter ad libitum and weaned at 31 to 32 d of age (28-d studies). Calves were housed in an unheated, curtain-sided nursery. In study 1, 6 milk replacer treatments were fed based on the combination of 3 CP concentrations (24, 26, and 28% CP) each with or without added Lys and Met. In studies 2 and 3, 26% CP and 2.34% Lys milk replacer treatments were fed to test the concentration of Met (0.64, 0.68, and 0.72% Met in study 2 and 0.64, 0.72, and 0.80% Met in study 3). In study 4, 26% CP, 2.34% Lys, and 0.72% Met milk replacer treatments were fed to test the concentration of Thr (1.06, 1.43, and 1.80%). There was a 17% improvement in average daily gain (ADG) in study 1 from adding Lys and Met that was maximized with 2.34% Lys. The ADG response to added Met in studies 2 (linear) and 3 (quadratic) were 13 and 7%, respectively, with a plateau at 0.72% Met. There was no ADG or efficiency response to added Thr in study 4. Formulating 17% fat, whey-based milk replacers fed at 0.68 kg/d to 26% CP, 2.34% Lys, and 0.72% Met appeared optimum based on responses of body weight gain, feed efficiency, and serum concentrations of urea nitrogen, while feeding calves more CP and essential AA did not improved ADG and efficiency. Requirements for calves less than 5 wk old, averaging 48 kg of BW, consuming 204 g of CP/d, and gaining 0.46 kg of BW/d, appeared to be met with 17 g of Lys, 0.31 Met:Lys ratio, 0.54 Met+Cys:Lys ratio, and a Thr:Lys ratio less than 0.60.  相似文献   

5.
The nutrient content of and feeding recommendations for milk replacers (MR) vary widely in North America, and acceleration of growth through manipulation of protein and energy intakes can reduce rearing costs of dairy operations. The effects of varying the protein and energy intake of MR on metabolite concentrations in plasma, liver, and muscle and the phosphorylation activity of protein kinase B (AKT) and ribosomal protein S6 (rpS6) cell signals in liver and muscle were assessed. Twenty-four newborn Holstein calves were fed 1 of 4 MR for 9 wk (n=6/treatment): (1) a 20% crude protein (CP), 20% fat MR fed at 441 g of dry matter (DM)/d (CON); (2) a high-protein, medium-fat MR (HPMF; 28% CP, 20% fat) fed at 951 g of DM/d; (3) a high-protein, high-fat MR (HPHF; 27% CP, 28% fat) fed at 951 g of DM/d; and (4) HPHF fed at 1,431 g of DM/d (HPHF+). Water and starter (20% CP, 1.43% fat) were offered ad libitum and calves were fed MR twice daily. Plasma samples were obtained at 1, 5, and 9 wk of age. Calves were not weaned and were slaughtered after the last blood sampling. Liver and muscle tissues were collected and analyzed for metabolite concentrations and cell signaling activity. Calves fed all treatments had lower plasma concentrations of Phe and Tyr, and a trend for lower Leu, but greater concentrations of Thr relative to calves fed CON. Calves fed all treatments had increased muscle concentrations of Met and muscle to plasma ratios of Phe, Tyr, and branched-chain amino acids compared with CON. All treatments increased liver to plasma ratios of Phe and Tyr but diminished the ratios of Met compared with CON. Phosphorylation of protein kinase B was not affected by treatment; however, relative to calves fed HPHF, HPMF and HPHF+ diets increased phosphorylation ratios of ribosomal protein S6 in the liver. Therefore, the changes in plasma and tissue concentrations and plasma to tissue ratios of amino acids were associated with enhanced growth rates. However, cell signaling activity was not consistent with accelerated growth in calves fed treatments with increased contents of energy and protein possibly due to confounding effects of diet (MR + starter) or fasting before tissue harvesting. Muscle concentrations of Met might have a regulatory role in protein synthesis in rapidly growing calves fed high levels of CP and energy.  相似文献   

6.
The objective of this study was to determine the effects of the canola meal (CM) inclusion rate in pelleted starter mixtures for Holstein heifer calves on dry matter intake, average daily gain, ruminal fermentation, plasma metabolites, and total-tract digestibility. Fifty Holstein heifer calves were blocked by birth date and body weight and, within block, randomly assigned to 1 of 5 pelleted starter treatments with 0, 15, 30, 45, or 60% of the crude protein supplied by CM instead of soybean meal (SBM). Pellets were formulated to be similar in crude protein (24.3%), starch (26.6%), and neutral detergent fiber (17.8%) and were provided to calves starting on d 8 of age, with starter intake measured daily. From 8.0 ± 0.0 (mean ± standard deviation) d of age through d 35.3 ± 2.4, calves were fed milk replacer at 15% of body weight, offered in 3 equal feedings at 0600, 1500, and 2100 h. After that, a gradual 21-d step-down weaning process was imposed, where no further milk replacer was provided starting on d 57.0 ± 0.0. Data for milk replacer and starter intake were calculated to determine weekly averages. On d 62.2 ± 0.8 of age, blood was collected every 4 h and analyzed for glucose, β-hydroxybutyrate, insulin, and urea concentrations. From d 66.2 ± 0.8 of age and extending for 3 d, fecal samples were collected every 12 h with a 3-h daily offset, to estimate fecal nutrient output and to determine apparent total-tract digestibility. Additionally, ruminal fluid (d 70.2 ± 0.8 of age) was sampled at 1300 h through an esophageal tube connected to a vacuum pump. The pH of ruminal fluid was measured, and ruminal fluid was analyzed to determine short-chain fatty acid and ammonia concentrations. Data were analyzed with fixed effect of treatment and random effect of block. Polynomial contrasts were calculated to assess linear, quadratic, and cubic effects with repeated measures statement for variables analyzed over time. Starter intake, average daily gain, body weight, and feed efficiency did not differ among treatments. Crude protein and ether extract digestibility were affected in a cubic manner, where CP was greatest for CM0, CM30, and CM45, and ether extract digestibility was least for CM15 and CM60. The molar proportion of acetate responded cubically, but the proportions of propionate and butyrate did not differ among treatments. Ruminal ammonia and plasma urea concentrations were not affected by CM inclusion rate. In conclusion, CM can replace up to 60% of the CP provided from SBM without affecting starter intake and growth of calves.  相似文献   

7.
The objective was to determine whether increased energy and protein intake between 2 and 14 wk of age would increase growth rates of heifer calves without fattening. At 2 wk of age, Holstein heifer calves were assigned to 1 of 4 treatments in a 2 x 2 factorial arrangement with 2 levels of protein and energy intake (moderate [M]; high [H]) in period 1 (2 to 8 wk of age) by 2 levels of protein and energy intake (low [L]; high [H]) in period 2 (8 to 14 wk of age) to produce similar initial BW for all 4 treatments. Treatments were ML, MH, HL, and HH, indicating moderate or high energy and protein intake during the first period and low or high intake during the second period. The M diet consisted of a standard milk replacer (21.3% CP, 21.3% fat) fed at 1.1% of BW on a DM basis and a 16.5% CP grain mix fed at restricted intake to promote 400 g of average daily gain (ADG), whereas the L diet consisted only of the grain mix. The H diet consisted of a high-protein milk replacer (30.3% CP, 15.9% fat) fed at 2% of BW on a DM basis and a 21.3% CP grain mix available ad libitum. Calves were weaned gradually from milk replacer by 7 wk and slaughtered at 8 (n = 11) or 14 wk of age (n = 41). In periods 1 and 2, ADG and the gain:feed ratio were greater for calves fed the H diet. Calves fed the H diet were taller after both periods 1 and 2. No difference was observed in carcass composition at 8 wk, but at 14 wk calves fed MH and HH had less water and more fat than calves fed ML and HL. Plasma IGF-I concentrations were greatest for calves fed the H diet during either period. Plasma leptin concentrations were increased in calves fed the H diet during period 1 from 4 to 6 wk of age. Increasing energy and protein intake from 2 to 8 wk and 8 to 14 wk of age increased BW, withers height, and gain:feed ratio. Calves fed the H diet from 8 to 14 wk of age had more body fat than calves fed the L diet. Increased energy and protein intake can increase the rate of body growth of heifer calves and potentially reduce rearing costs.  相似文献   

8.
《Journal of dairy science》2023,106(8):5402-5415
This study evaluated the effects of supplementing calf milk replacer with essential AA on immune responses, blood metabolites, and nitrogen metabolism of 32 Holstein bull calves [28 d of age, 44 ± 0.8 kg of body weight (BW)] exposed to lipopolysaccharide (LPS). Calves were bottle-fed a commercial milk replacer (20% crude protein and 20% fat, dry matter basis) twice daily along with a calf starter (19% crude protein, dry matter basis) for 45 d. The experiment was a randomized complete block design and treatments were a 2 × 2 factorial arrangement. Treatments were milk replacer (fed twice daily at 0.5 kg/d of powder) supplemented with or without 10 essential AA (+AA vs. −AA), and subcutaneous injection of sterile saline with or without LPS (+LPS vs. −LPS) at 3 h after the morning feeding on d 15 (4 µg LPS per kg of BW) and 17 (2 µg LPS per kg of BW). Calves also received a 2-mL subcutaneous injection of ovalbumin (6 mg of ovalbumin/mL) on d 16 and 30. Rectal temperature and blood samples were collected on d 15 before LPS injection and at h 4, 8, 12, and 24 thereafter. From d 15 to 19, total fecal and urinary output were collected, and feed refusals were documented. Rectal temperature was greater in +LPS than −LPS calves at h 4, 8, and 12 after LPS injection. Serum cortisol was greater for +LPS than −LPS at h 4 after LPS exposure. At d 28, serum antiovalbumin IgG level was greater in +LPS +AA calves compared with +LPS −AA. Serum glucose was lower for +LPS than −LPS at h 4 and 8. Serum insulin was greater in +LPS than −LPS calves. Plasma concentrations of Thr, Gly, Asn, Ser, and hydroxyproline were lower for +LPS versus −LPS calves. Plasma concentrations of Met, Leu, Phe, His, Ile, Trp, Thr, and Orn were greater in +AA calves than −AA calves. Plasma urea N and N retention were not different among LPS and AA treatments. The lower concentrations of AA in +LPS than −LPS calves indicate higher demand for AA in immuno-compromised calves fed milk replacer. Additionally, higher concentration of ovalbumin-specific IgG level in +LPS calves supplemented with +AA compared with +LPS calves with −AA suggests that supplementing AA to immune-compromised calves might improve immune status.  相似文献   

9.
Two studies were conducted to assess the effect of protein source and microencapsulated sodium butyrate (MSB) inclusion in pelleted starter mixtures on growth performance, gain to feed (G:F) ratio, nutrient digestibility, and selected blood metabolites in calves. In study 1, 28 Holstein bull calves (8.7 ± 0.8 d of age and 43.0 ± 4.4 kg; mean ± SD) were allocated to 1 of 4 treatments in a 2 × 2 factorial arrangement and fed a pelleted starter mixture containing canola meal (CM, 35% as fed) or soybean meal (SM, 24% as fed) as the main source of protein, with or without supplemental MSB (0.3% as fed). Starter mixtures were formulated to be similar for crude protein, Lys, and Met, and were fed ad libitum. Calves were weaned after 42 d of milk replacer feeding (51.7 ± 0.8 d of age) and observed for another 21 d. Furthermore, selected blood metabolites were measured on d 21, 42, and 63 of the study, and nutrient digestibility was measured after weaning. In study 2, 60 Holstein heifer calves (9.1 ± 0.8 d of age and 43.2 ± 4.2 kg) were assigned to the same treatments as in study 1. The calves were weaned after 49 d of milk replacer feeding (59.1 ± 0.8 d of age) and observed for an additional 14 d. Milk replacer and starter mixture intake and fecal score were recorded daily, whereas body weight (BW) was recorded weekly. In study 1, calves fed starter mixtures containing CM had or tended to have lesser preweaning starter intake, weaning average daily gain (ADG), weaning and overall G:F ratio, and postweaning total-tract dry matter digestibility, as opposed to those fed starter mixtures with SM. However, these differences did not affect overall starter intake, overall ADG, or final BW. Supplementation with MSB only tended to increase the preweaning starter mixture intake. In study 2, heifer calves that were fed starter mixtures with CM had greater cumulative starter intake after weaning, but the protein source in the starter mixture had no effect on ADG, BW, or G:F ratio. Inclusion of MSB in starter mixtures for calves tended to decrease postweaning starter mixture intake. In conclusion, use of CM or SM as the main source of protein in starter mixture resulted in similar growth performance of bull and heifer calves; however, CM use in starter mixtures reduced starter intake, ADG, and G:F ratio at least at some points of rearing. Supplementation of MSB had minor effects on the growth performance of calves.  相似文献   

10.
Performance, rumen development, and metabolism of male Holstein calves (n = 54) were evaluated according to 1 of 3 liquid feeding strategies: 4 L of milk replacer (MR)/d until 60 d old (4L-60d), 6 L of MR/d until 29 d old and 4 L/d from 30 to 60 d (6L-29d/4L-60d), or 6 L of MR/day until 60 d old (60d-6L). Water and starter were provided ad libitum. Intakes of MR and starter were monitored daily and body weight (BW) weekly. Blood samples for glucose and insulin concentrations and ruminal content samples for volatile fatty acids and ruminal ammonia concentrations were collected at 15, 30, 45, 60, 75, and 90 d of age. Six calves on each treatment were euthanized at 30, 60, and 90 d of age. Empty weights of forestomach and abomasum, papillae length, and mitotic index were measured. Average MR intake/d (expressed as a percent of BW) was greater for calves receiving 6 L/d than for those receiving 4 L/d until 30 d of age. Calves on the 6L-29d/4L-60d had the smallest MR intake from 30 to 60 d old, followed by the 4L-60d and 6L-60d treatments. Starter intake (kg of dry matter/day) did not differ between groups. It increased from 0.065 kg/d in the first month to 0.386 kg/d in the second month, and to 2.065 kg/d after weaning. Weight gain was greater for calves fed more MR in the first month, but no difference was observed during the second month. After weaning, 6L-60d calves had greater rate of weight gain than others and were heavier at 30, 60, and 90 d of age. Weight of empty forestomachs, ruminal pH, and ammoniac nitrogen concentration were not different among groups. Propionate concentration was lower for 6L-60d calves, but acetate and butyrate concentrations were not influenced by MR feeding strategy. Calves fed more MR until d 30 had greater ruminal epithelium mitotic index. The different MR feeding strategies did not influence papillae length or ruminal epithelium thickness. Lesions such as ruminal parakeratosis or hyperkeratosis were not observed. The MR feeding strategy did not affect glucose concentration, but insulin was higher in 6L-60d calves than in the other groups. Glucose concentration increased with age, whereas insulin decreased until 45 d old, and then started to increase until 90 d. In conclusion, MR feeding strategy did not influence ruminal development. Feeding calves 6 L of MR/d over 60 d resulted in greater rate of weight gain without negative effects on starter intake or forestomach development. The weight advantage that 6L-60d calves obtained preweaning was maintained until 90 d of age.  相似文献   

11.
Our objectives were to determine the effect of starter crude protein (CP) content on body composition of male Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (n = 45) were purchased on the day of birth and assigned to a randomized block design. Eight calves were harvested at baseline and remaining calves were divided among the following 3 dietary treatments: (1) low rate of milk replacer [LMR; 20.6% CP, 21.7% fat; 1.25% of body weight (BW) as dry matter (DM)] plus conventional starter (CCS; 21.5% CP, DM basis); n = 11 calves; (2) high rate of milk replacer (HMR; 29.1% CP, 17.3% fat; 1.5% of BW as DM for wk 1, 2% of BW as DM wk 2–5, 1% of BW as DM wk 6) plus conventional starter; n = 12 calves; and (3) enhanced milk replacer (HMR) plus high-CP starter (HCS; 26% CP, DM basis); n = 14 calves. A subset of calves (n = 8) was harvested on d 2 to provide baseline data. Calves began treatments on d 2 or 3 of age. Calves were weaned at d 42. Starter was available ad libitum. Calves from each treatment were harvested at 5 (n = 18) and 10 (n = 19) wk of age and divided into 4 fractions: carcass; viscera; blood; and head, hide, feet, and tail. Fractions were analyzed for energy, CP, lipid, and ash. Average weekly starter intake did not differ between enhanced treatments. Gain of BW was greater for calves fed HMR than for LMR, but was unaffected by starter CP. Carcass weights at 5 wk were greater for HMR but did not differ between starter CP content. At 10 wk, carcass weights were heavier for HMR and had a greater percentage of empty BW for HMR + CCS than for HMR + HCS. At 10 wk, the weights of reticulorumen and liver were greater for calves fed HMR + HCS than for those fed HMR + CCS. At 5 wk, empty BW gain for HMR contained more water and less fat and ash than in calves fed LMR. At 10 wk, empty BW gain for calves fed HMR + HCS contained a greater percentage of water and less fat than for calves fed HMR + CCS. Plasma β-hydroxybutyrate was greater after weaning for calves fed HMR + HCS than for those fed HMR + CCS. After weaning, calves fed HMR had greater plasma total protein concentration than those fed LMR, and total protein was greater for calves fed HMR + HCS than those fed HMR + CCS. Plasma urea N was greater for calves fed HMR treatments, and postweaning was greater for calves fed HMR + HCS. A high-CP starter had minimal effect on empty BW gain before weaning, but after weaning it tended to increase mass of reticulorumen and liver.  相似文献   

12.
Using soluble fiber sources in starter and grower feeds for dairy calves less than 4 mo of age is common to reduce costs compared with including traditional cereal grains. Beet pulp (BP) contains relatively high concentrations of pectin compared with other fibrous feed ingredients and has been shown to be an acceptable replacement for corn in adult cow diets. However, limited information is available on BP digestibility and growth performance for young calves fed diets with BP. In this study, 48 male Holstein calves (59 ± 2 d of age, 77 ± 2.2 kg of initial body weight) were fed 95% concentrate, 5% chopped grass hay diets in groups with 4 calves/pen for 56 d. Pens were randomly assigned to 1 of 3 dietary treatments containing 0, 15, or 30% BP on an as-fed basis. Body weights, hip widths, and body condition scores were assessed at 56 (start of trial), 84, and 112 d of age. Dry matter intakes and refusals were recorded daily by pen. Digestion coefficients (dC) of the diets and microbial protein flows were estimated when calves were approximately 84 d of age. Fecal samples were collected daily from pen floors over a 7-d period, and urine samples were collected from 2 calves/pen over a 2-d period and analyzed for purine derivatives. Calf average daily gain and hip width change decreased linearly (from 1.09 to 1.04 kg/d and 5.4 to 4.8 cm over 56 d, respectively) with increasing BP. Dry matter, organic matter (from 79.7 to 75.6%), crude protein (75.7 to 70.1%), and starch (97.1 to 93.1%) dC decreased with increasing inclusion rates of BP. Conversely, neutral detergent fiber (from 47.1 to 52.7%) and acid detergent fiber (44.1 to 53.0%) dC increased with increasing BP. Estimates of urine output and microbial protein flow using purine derivatives did not differ among treatments. Under the conditions of this study, BP reduced growth largely by reducing diet digestibility in dairy calves from 56 to 112 d of age.  相似文献   

13.
《Journal of dairy science》2022,105(10):8087-8098
During weaning, withdrawal of milk replacer is not directly compensated for by an increase in solid feed intake. Therefore, greater fat inclusion in the starter might mitigate this temporary dietary energy decline. However, fat inclusion in solid feeds may generally limit rumen fermentability and development. To address these potentially conflicting outcomes, we conducted 2 experiments to evaluate the effect of supplementing a high-fat extruded pellet mixed with a calf starter on feed intake, performance, and nutrient digestibility in calves. In experiment 1, 60 Holstein bull calves were blocked by serum IgG (2,449 ± 176 mg/dL) and date of arrival (2.5 ± 0.5 d of age). Within each block, calves were randomly assigned to 1 of 3 treatments: a standard control calf starter (CON; 3.1% fat) and mixtures of CON with 10% inclusion of 1 of 2 different high-fat extruded pellets containing 85% of either hydrogenated free palm fatty acids (PFA, 7.1% fat) or hydrogenated rapeseed triglycerides (RFT, 6.7% fat). Calves were offered milk replacer up to 920 g/d until 42 d of age, followed by a gradual weaning period of 7 d. Calves had ad libitum access to the starter diets, straw, and water. No differences were observed between CON, PFA, and RFT calves on body weight (BW) or average daily gain (ADG) until 49 d of age. From weaning (50 d) until 112 d, PFA calves had a greater BW and ADG than RFT and CON animals. Moreover, PFA calves had the highest intakes of starter, straw, calculated metabolizable energy, and crude protein after weaning. Overall, no differences were present in blood β-hydroxybutyrate and glucose concentrations between treatments; however, calves in the RFT treatment had a higher concentration of insulin-like growth factor-1. In experiment 2, 24 Holstein bull calves at 3 mo of age were assigned to 1 of 8 blocks based on arrival BW and age. Within each block, calves were randomly assigned to 1 of the 3 treatments previously described for experiment 1. Calves on the RFT treatment had the lowest total-tract apparent dry matter and fat digestibility, potentially explaining the differences in performance observed between PFA and RFT calves. Inclusion of the PFA pellet at 10% with a calf starter improved BW, solid feed, and energy intake after weaning. However, these benefits were conditioned by fat source and its digestibility.  相似文献   

14.
We measured the effects of milk replacers containing 0, 33, 66, or 100% of the total replaceable whey protein as bovine plasma protein (PP), without or with Ile supplementation, on the intake, growth, and health of 124 male Holstein calves for 35 d. Milk replacers were formulated to contain 18% crude protein and 20% fat, with contents of Lys and Met equalized. When fed to calves at 1.5% of body weight (dry matter basis) under thermoneutral conditions, diets were predicted to allow average daily gains of 0.55 kg/d based on metabolizable energy or 0.40 kg/d based on apparent digestible protein. Protein supply was more limiting than energy so that differences in protein use could be detected. Dry matter intakes decreased with increased PP, irrespective of Ile supplementation. Final body weights decreased linearly with increasing PP, regardless of Ile supplementation. Average daily gain tended to be affected in a quadratic manner as PP increased, either with or without Ile supplementation; average daily gain and gain-feed ratio were greatest for calves fed diets containing 33% PP and lowest for calves fed 100% PP. The analyzed Lys content in the milk replacers was variable compared with formulated values, and this may have affected growth results. However, the gain-Lys ratio was affected by an interaction of the linear effect of increasing PP with Ile supplementation: it decreased with increasing PP but was improved by supplementation with Ile for calves fed 100% PP. Body measurements decreased with increasing PP inclusion; only decreased heart girth was reversed with Ile supplementation. The lowest and highest inclusion of PP, regardless of Ile supplementation, decreased the occurrence of scours compared with the control diet (all whey protein). Calves fed the lowest and highest PP without Ile supplementation also had fewer total days of scours in the first 21 d. In addition, calves fed 100% PP without supplementation of Ile had fewer days of medication compared with the control diet. Even at the highest PP inclusion, average daily gain was minimally affected if Ile was supplemented. Growth rates, gain-feed ratio, and gain-Lys ratio were decreased at higher PP inclusion, but Ile overcame part of the reduction in gain-Lys ratio for 100% PP. Additional titration studies will have to be conducted to determine optimal PP inclusion rates, with a focus on supplementation of potentially limiting essential AA, as well as effects at higher growth rates.  相似文献   

15.
Evidence has shown that soybean meal is perceived as more palatable than canola meal by dairy calves in short-term preference tests. This study evaluated the effect of protein source on longer-term dietary selection of dairy calves. In experiment 1, 40 Holstein bull calves (11.4 ± 4.3 d of age) were randomly assigned to 1 of 2 choice diets for 6 wk: base starter pellet (S; 12% crude protein; CP) and high-protein pellet (40% CP) containing either (1) soybean meal (SB) or (2) canola meal (CM). In wk 7 to 8, all calves were offered a single pelleted diet containing the protein source to which they were previously exposed. In experiment 2, 22 Holstein bull calves (9.9 ± 4.6 d of age) were offered, for 6 wk, a choice of 2 mixed pelleted diets: (1) 70% S and 30% SB (SB mix), or (2) 70% S and 30% CM (CM mix). In wk 7 to 8, calves were randomly assigned to 1 of 2 choice diets, as in experiment 1: (1) SB + S, or (2) CM + S. All feeds were provided ad libitum. Calves received 6 L/d of milk replacer [0.75 kg/d of dry matter (DM)] for the duration of both experiments. Feed intake was recorded daily and calves were weighed every 14 d. Feeds were sampled weekly to analyze DM and nutrient intake. Mixed diets in experiment 2 were analyzed for CP in wk 4 and 6 to assess feed sorting (calculated as actual CP intake as a percentage of predicted intake). In experiment 1, calves offered SB + S in wk 1 to 6 consumed more high-protein pellet than calves offered CM + S [73 vs. 42% of DM intake (DMI)] and, consequently, more CP (168 vs. 117 g/d). Solid feed DMI and average daily gain were similar between treatments. When offered a single diet in wk 7 to 8, calves offered starter containing soybean meal increased intake to a greater extent than calves offered the starter containing canola meal. In experiment 2, calves preferred the SB mix to CM mix (preference ratio: 0.7). Calves consumed more CP than predicted from SB mix in wk 4 and 6 (108 ± 2.0%), indicating that they were sorting in favor of SB. In contrast, calves consumed less CP than predicted from CM mix in wk 4 (81.48 ± 4.1%), indicating that they were sorting against CM. When assigned to choice treatments in wk 7 to 8 of experiment 2, calves offered SB + S consumed more protein pellet than calves offered CM + S (81 vs. 31% DMI) and consumed more CP (378 vs. 196 g/d). Average daily gain was greater for calves offered SB + S but DMI was similar. Overall, these results suggest that dietary selection was influenced by innate feed preferences, and milk-fed calves may not be sensitive to protein imbalances in their diet.  相似文献   

16.
Forty Israeli-Holstein 5-d-old calves were used to determine the effect of increasing calf body weight (BW) and skeletal size during the nursing period on age and skeletal size at puberty and on skeletal size and performance during first lactation. The calves were randomly allotted to 2 experimental groups as follows: milk replacer (MR) [calves were given 0.450 kg/d dry matter of milk replacer for the first 50 d of life] and milk-fed (MF) [calves had free access to milk in two 30-min meals/d]. From weaning to 180 d of age, all calves were fed the same diet. At 180 d of age, the MR and MF calves were each divided into 2 equal subgroups: one subgroup from each treatment was given only growing ration, and the other was given the same ration supplemented with fish meal to supply 2% crude protein (CP) (treatments MR + CP and MF + CP, respectively). Finally, at 270 d of age, all calves were housed together and fed a growing heifer's ration until first calving. During the entire nursing period, the MF calves consumed 9.8% more DM, 39.7% more CP, and 52.4% more metabolizable energy than the MR calves. At 60 d of age, BW and all skeletal parameters were higher in the MF calves than in the MR calves. During the entire rearing period (60 to 550 d), the average BW of the MF calves was greater by 16 kg than the BW of the MR calves. Nursing management did not affect differences in skeletal parameters at calving. Average age at puberty onset was 272 +/- 26.8 d; MF calves reached puberty 23 d earlier than MR calves. Yields of milk (kg/305 d) and fat-corrected milk (FCM, kg/d) were greater for the MF + CP heifers than for the MR heifers. It was concluded that nursing by ad libitum milk, as compared with milk replacer, affected BW but not skeletal size of the adult animal, decreased age of puberty onset, and increased FCM yield at first lactation. Supplementing the diet with 2% CP during the prepubertal period increased BW but not skeletal size of the adult animal and 305-d milk and FCM yields during first lactation.  相似文献   

17.
《Journal of dairy science》2019,102(9):8074-8091
The objective of this research was to determine if form of calf starter (CS) and addition of a fatty acid blend (FA) influenced intake, growth, digestion, and indices of immune status and stress in calves from 0 to 4 mo of age. Male Holstein calves [n = 48; 41.9 kg of body weight (BW), standard error = 0.7; 2 to 3 d of age] were assigned to receive reconstituted whole milk powder [0.66 kg of dry matter (DM)/d to 39 d, then 0.33 kg of DM/d to weaning at 42 d] without or with added FA. Calf starters were textured (pellet, whole oats, whole corn) or pelleted and were offered for ad libitum consumption from 0 to 56 d, then blended with 5% chopped grass hay and fed from d 57 to 112. Starters contained 20% crude protein (CP) and 38 to 40% starch in the DM. From d 0 to 56, calves were housed individually. From d 57 to 112, calves were grouped into pens by treatment (n = 4/pen). Form of CS during the initial 56 d had no effect on intake or growth, though days with fluid feces (fecal score ≥2.5) were greater when calves were fed textured CS. Feeding FA during the initial 56-d increased average daily BW gain, gain-to-feed ratio, and change in hip width, and reduced the number of days calves were treated with antibiotics. During d 57 to 112, CS form had no effects on any performance measure. Adding FA to CS increased average daily BW gain and hip width change, and tended to improve efficiency of BW gain. Total-tract digestibility was estimated at 4, 6, and 8 wk with 5 calves per treatment, and at 10, 13, and 16 wk of age using pen (n = 3 per treatment) as the experimental unit. Feeding FA increased or tended to increase total-tract digestion of DM, organic matter, starch, neutral detergent fiber (NDF), acid detergent fiber (ADF), CP, and fat at one or more measurement periods. Calves fed a textured CS increased or tended to increase digestion of DM, organic matter, starch, sugar, NDF, ADF, and CP during wk 6 and 8. However, during the second 56-d phase, feeding textured CS reduced or tended to reduce digestion of DM, organic matter, starch, NDF, ADF, and fat during wk 13 and 16. Inclusion of FA in milk increased serum bactericidal activity before weaning. Serum haptoglobin concentration increased 3 d postweaning when calves were fed textured CS. Feeding FA improved animal health, digestion, and performance. Form of CS had few effects on animal performance.  相似文献   

18.
We determined the effects of calf milk replacers containing 0, 5, or 10% bovine plasma protein (PP), either without or with the supplemental amino acids (AA) Ile and Thr, on growth and health of male Holstein calves (n = 104) for 56 d. Milk replacers were formulated to contain 22% crude protein (CP), 20% fat, and 2.0% Lys. Milk replacers (12.5% solids) were fed at a rate of 1.5% of body weight (BW) on a dry matter basis during wk 1 and 1.75% of BW beginning on d 8. Starter was introduced on d 36 so that effects of PP and AA balance in milk replacers could be isolated. Intake, respiratory scores, and fecal scores were measured daily. Body weight and stature were measured weekly and blood serum samples were obtained during wk 4. Treatments had no effects on intakes of dry matter, CP, or metabolizable energy. During wk 6 and 8, BW was less as PP inclusion increased without AA supplementation compared with the other treatments. In wk 7, calves fed the higher level of PP without AA had lower BW than calves fed either the lower level of PP without supplemented AA or the higher inclusion of PP with supplemented AA. Average daily gain and gain:feed were lowest for calves fed the higher inclusion of PP without supplemented AA; heart girth in wk 7 was smallest for those calves. During the first 21 d, occurrence of scours was greater in calves fed the control milk replacer than in calves fed milk replacers containing the higher inclusion of PP either without or with supplemental AA. Occurrence of scours was also greater for the lower inclusion of PP compared with the higher inclusion of PP when AA were supplemented. Throughout the 56-d experiment, the chance of antibiotic treatment was greater for calves fed the control milk replacer than for all other treatments except the higher inclusion of PP without supplemental AA. Additionally, chance of antibiotic treatment was greater for the higher inclusion of PP without supplemental AA than for other milk replacers with PP. Calves fed treatments with the higher inclusion of PP had fewer days of scours than the controls. All milk replacers with PP, except the milk replacer containing higher PP without supplemental AA, had fewer days of treatment with antibiotics compared to the all-milk control. Inclusion of PP provided similar performance and improved health as long as milk replacers were balanced for Ile and Thr.  相似文献   

19.
The objective of this study was to evaluate the effects of preweaning total plane of milk intake and weaning age on intake, growth performance, and blood metabolites of dairy calves. A total of 48 Holstein calves (40 ± 1.6 kg of body weight) were used in a 2 × 2 factorial arrangement with the factors of weaning age (d 60 vs. 75) and the total plane of milk intake (medium vs. high) during the preweaning period. Calves were assigned to 1 of 4 treatments: (1) calves fed medium plane of milk (MPM) intake and weaned on d 60 of age (MPM-60d, 4 L/d of milk from d 3 to 10, 6 L/d of milk from d 11 to 55, and 3 L/d of milk from d 56 to 60 of age; total milk intake = 317 L), (2) calves fed MPM intake and weaned on d 75 of age (MPM-75d, 4 L/d of milk from d 3 to 10 and 4.5 L/d of milk from d 11 to 70 of age followed by feeding 2.25 L/d of milk from d 71 to 75 of age; total milk intake = 313 L), (3) calves fed high plane of milk (HPM) intake and weaned on d 60 of age (HPM-60d, 4 L/d of milk from d 3 to 10, 6 L/d of milk from d 11 to 20, and 8.5 L/d of milk from d 21 to 55 followed by feeding 4.25 L/d of milk from d 56 to 60 of age; total milk intake = ~411 L); and (4) calves fed HPM intake and weaned on d 75 (HPM-75d, 4 L/d of milk from d 3 to 10, and 6 L/d of milk from d 11 to 70 of age followed by feeding 3 L/d of milk from d 71 to 75 of age; total milk intake = 407 L) with no milk refusals. All of the calves were monitored up to d 90 of age. Regardless of weaning age, starter feed intake and dry matter intake (% of body weight) were lower in calves fed HPM compared with those receiving MPM. A tendency for the plane of milk intake × weaning age interaction was observed for metabolizable energy intake with the highest value was recorded with the HPM-75d calves. The lowest efficiency of metabolizable energy intake and average feed efficiency was observed in HPM-60d calves throughout the experimental period as compared with the other groups. An interaction was found between the total plane of milk intake and weaning age regarding effects on total average daily gain, average daily gain/metabolizable energy intake, feed efficiency, final body weight, and plasma β-hydroxybutyrate levels with the highest values measured in HPM-75d calves. Weaning on d 75 versus d 60 improved wither height and hip width, which tended to increase body length at the end of the trial. The results suggest that calves fed high amounts of milk during their preweaning period benefit from extending the time of weaning from 60 to 75 d of age based on average daily gain, feed efficiency, and final body weight.  相似文献   

20.
The effect of form of starter grain (coarse vs. ground) and inclusion of various levels of hay on body weight gain and rumen development was evaluated. Two experiments were conducted to determine the effect of form of diet and forage inclusion on intake, growth, feed efficiency, and weaning age in dairy calves. Diets consisted of commercial coarse starter (C), ground starter (G), coarse starter with 7.5% bromegrass hay of consistent particle size (8 to 19 mm) (H1), and coarse starter with 15% hay (H2). In experiment 1, intake was held constant across treatments until weaning, when feed was offered ad libitum. Calves receiving H1 and H2 were heavier and had greater body weight gain and greater feed efficiency than calves receiving C. There were no differences in intake. Total volatile fatty acid concentrations were higher, and the proportion of acetate was lower for calves fed G vs. C. In experiment 2, calves (n = 56) were offered diets on an ad libitum basis and weaned according to intake. There were no differences in body weight gain, average daily gain, feed efficiency, and age at weaning with respect to treatment. Starter and total dry matter intake tended to be greater in calves fed H1 and H2 vs. C. The addition of controlled particle size hay to diets of young calves appears to favorably alter rumen environment, resulting in increased intake and improved feed efficiency. Forage of a consistent particle size can be successfully utilized in starter rations of young calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号