首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Food microbiology》2002,19(1):75-82
The effect of modified atmosphere packaging (MAP) on the growth of Listeria monocytogenes in inoculated and non-inoculated Cameros cheese was evaluated. Three different modified atmosphere conditions were studied (20%CO2/80%N2, 40%CO2/60%N2 and 100%CO2). Control cheeses were packaged in air. The product was stored at 4°C and evaluated periodically to investigate its microbiological quality.MAP presented an extended shelf-life. Those containing CO2 reduced the growth rate of mesophiles, psychrotrophs and anaerobes, which was lower when the CO2 concentration increased. A concentration of 100% CO2 showed the lowest microbial counts. L. monocytogenes growth was lower when the CO2 concentration increased. However, after 28 days the L. monocytogenes population was 1·3 log units lower in inoculated cheeses packaged at 100% CO2 than in those packaged in air. Listeria monocytogenes can grow in atmospheres containing 20, 40 and 100% CO2. L. monocytogenes were not found in any of the non-inoculated samples. It was concluded that MAP was not a suitable means to prevent the growth of L. monocytogenes in Cameros cheese.  相似文献   

2.
Effect of pyrophosphate (PP) in combination with modified atmosphere (MAP) (80% CO2, 10% O2 and 10% N2) on the survival of Listeria monocytogenes and Escherichia coli O157 inoculated on seabass slices stored at 4 °C was investigated. PP pretreatment showed the synergistic effect on microbiological inhibition with MAP as evidenced by the lowered TVC and LAB counts, compared with samples stored in air and those kept under MAP. Microbiological changes of seabass slices inoculated with different levels of L. monocytogenes or E.coli O157 (103 and 105 cfu/g) were monitored during storage. PP pretreatment reduced colony count of E. coli O157 and extended the lag phase of L. monocytogenes. Therefore, MAP in combination with PP pretreatment not only retarded microbiological deterioration of seabass slices but also reduced or inactivated some pathogenic bacteria to some extent.  相似文献   

3.
Listeria monocytogenes CCUG 15526 was inoculated at a concentration of approximately 7.0 log10 cfu/mL in milk samples with 0.3, 3.6, 10, and 15% fat contents. Milk samples with 0.3 and 3.6% fat content were also inoculated with a lower load of approximately 3.0 log10 cfu/mL. Inoculated milk samples were subjected to a single cycle of ultra-high-pressure homogenization (UHPH) treatment at 200, 300, and 400 MPa. Microbiological analyses were performed 2 h after the UHPH treatments and after 5, 8, and 15 d of storage at 4°C. Maximum lethality values were observed in samples treated at 400 MPa with 15 and 10% fat (7.95 and 7.46 log10 cfu/mL), respectively. However, in skimmed and 3.6% fat milk samples, complete inactivation was not achieved and, during the subsequent 15 d of storage at 4°C, L. monocytogenes was able to recover and replicate until achieving initial counts. In milk samples with 10 and 15% fat, L. monocytogenes recovered to the level of initial counts only in the milk samples treated at 200 MPa but not in the milk samples treated at 300 and 400 MPa. When the load of L. monocytogenes was approximately 3.0 log10 cfu/mL in milk samples with 0.3 and 3.6% fat, complete inactivation was not achieved and L. monocytogenes was able to recover and grow during the subsequent cold storage. Fat content increased the maximum temperature reached during UHPH treatment; this could have contributed to the lethal effect achieved, but the amount of fat of the milk had a stronger effect than the temperature on obtaining a higher death rate of L. monocytogenes.  相似文献   

4.
《Food microbiology》2000,17(4):407-414
This study evaluated the shelf-life quality of Cameros cheeses packaged under modified atmospheres. Five different modified atmosphere conditions were studied (carbon dioxide/nitrogen mixtures and vacuum). Control cheeses were packaged in air. The product stored at 3–4°C was evaluated periodically to investigate its sensory quality, microbiological condition and physicochemical characteristics. Weight loss and pH evolution were similar in vacuum and air packaging. Cheeses packaged in 100% CO2showed the greatest weight losses and lower pH values. CO2reduced proteolysis and lipolysis during storage in all conditions studied. Fat acidity and NPN/TN values were slightly higher in vacuum than in CO2, but lower than in air. Modified atmosphere packaging presented an extended shelf life. Those containing CO2reduced the growth rate of mesophiles, psychrotrophs, Enterobacteriaceae and coliforms, which was lower when the CO2concentration increased. The lowest microbial counts were at 100% CO2while vacuum conditions presented microbial counts only slightly lower than the controls. Salmonella spp.,Staphylococcus aureus and Listeria spp. were not found in any of the samples. Faecal coliforms, moulds and yeasts were not detected under CO2atmospheres or in vacuum. After 7 days of storage, the sensory characteristics of the control cheeses were unacceptable in all the parameters studied. However, the overall score for cheeses stored in 40% and 50% CO2did not change substantially, retaining a reasonable acceptability until the end of the storage period. The 100% CO2atmosphere had a very negative effect on sensory quality. With regard to Cameros cheese, packaging in 50%CO2/50%N2and 40%CO2/60%N2are the most effective for extending shelf life and retaining good sensory characteristics.  相似文献   

5.
The effect of high-hydrostatic-pressure processing (HPP) on the survival of a 5-strain rifampicin-resistant cocktail of Listeria monocytogenes in Queso Fresco (QF) was evaluated as a postpackaging intervention. Queso Fresco was made using pasteurized, homogenized milk, and was starter-free and not pressed. In phase 1, QF slices (12.7 × 7.6 × 1 cm), weighing from 52 to 66 g, were surface inoculated with L. monocytogenes (ca. 5.0 log10 cfu/g) and individually double vacuum packaged. The slices were then warmed to either 20 or 40°C and HPP treated at 200, 400, and 600 MPa for hold times of 5, 10, 15, or 20 min. Treatment at 600 MPa was most effective in reducing L. monocytogenes to below the detection level of 0.91 log10 cfu/g at all hold times and temperatures. High-hydrostatic-pressure processing at 40°C, 400 MPa, and hold time ≥15 min was effective but resulted in wheying-off and textural changes. In phase 2, L. monocytogenes was inoculated either on the slices (ca. 5.0 log10 cfu/g; ON) or in the curds (ca. 7.0 log10 cfu/g; IN) before the cheese block was formed and sliced. The slices were treated at 20°C and 600 MPa at hold times of 3, 10, and 20 min, and then stored at 4 and 10°C for 60 d. For both treatments, L. monocytogenes became less resistant to pressure as hold time increased, with greater percentages of injured cells at 3 and 10 min than at 20 min, at which the lethality of the process increased. For the IN treatment, with hold times of 3 and 10 min, growth of L. monocytogenes increased the first week of storage, but was delayed for 1 wk, with a hold time of 20 min. Longer lag times in growth of L. monocytogenes during storage at 4°C were observed for the ON treatment at hold times of 10 and 20 min, indicating that the IN treatment may have provided a more protective environment with less injury to the cells than the ON treatment. Similarly, HPP treatment for 10 min followed by storage at 4°C was the best method for suppressing the growth of the endogenous microflora with bacterial counts remaining below the level of detection for 2 out of the 3 QF samples for up to 84 d. Lag times in growth were not observed during storage of QF at 10°C. Although HPP reduced L. monocytogenes immediately after processing, a second preservation technique is necessary to control growth of L. monocytogenes during cold storage. However, the results also showed that HPP would be effective for slowing the growth of microorganisms that can shorten the shelf life of QF.  相似文献   

6.

ABSTRACT

Salmonella Typhimurium and Listeria monocytogenes are major bacterial pathogens associated with poultry products. A controlled released ClO2 sachet applied with modified atmosphere packaging (MAP) was evaluated for its ability to control the growth of S. Typhimurium and L. monocytogenes on raw chicken breast during refrigerated storage. The fresh chicken samples were inoculated with one or the other of the pathogens at 104 cfu/g, and the packages (with and without ClO2 sachet) were flushed with ambient air or 30% CO2/70% N2 before sealing, and then stored at 4C for up to 21 days. The maximum reduction in MAP plus ClO2 (compared with MAP alone) was 0.68 log cfu/g for S. Typhimurium and 1.87 log cfu/g for L. monocytogenes. Color and pH changes of the chicken breast were observed at 8 µg/h of ClO2 during the storage period.

PRACTICAL APPLICATIONS

We think that the results of the study with the combined treatment of chlorine dioxide (ClO2) and modified atmosphere packaging may enhance the effectiveness of antimicrobials, reduce the amount of agent needed, and decrease the risk of off‐flavors. The applications of the results will be useful for poultry industry to give the significant improvement in shelf life for packaged fresh products.  相似文献   

7.
This study was conducted to compare the shelf‐life of beef steaks stored in different packaging conditions: overwrapped (OW) packaging and 2 modified atmosphere packaging systems (MAP): 80% O2 MAP (80% O2/20% CO2) and 50% O2 MAP (50% O2/40% CO2/10% N2). Steaks were stored at 2 °C for 20 d. Headspace gas composition, microbial counts, color stability, pH, purge loss, and lipid oxidation were monitored. Among the packaging types, 50% O2 MAP was superior to OW packaging and 80% O2 MAP in delaying bacterial growth and extending shelf‐life to 20 d. 50% O2 MAP also gave steaks an acceptable color during storage. No significant differences were observed in color stability of steaks packaged in both 50% O2 MAP and 80% O2 MAP. This study reveals 50% O2 MAP is a realistic alternative to preserve beef steaks efficiently.  相似文献   

8.
Morcela de Arroz (MA) is a ready‐to‐eat blood and rice cooked sausage produced with pork, blood, rice, and seasonings, stuffed in natural casing and cooked above 90 °C/30 min. It is commercialized whole, not packed, with a restricted shelf life (1 wk/0 to 5 °C). The objective of this work was to establish sliced MA shelf life considering both the behavior of L. monocytogenes through a microbiological challenge test (MCT) and the consumer acceptability of MA stored: vacuum packed (VP), modified atmosphere packed (MAP: 80% CO2/20% N2), and aerobic packed (AP). The MCT was conducted inoculating ±3 log CFU/g of L. monocytogenes cell suspension on the MA slices. Packaged samples were stored at 3 ± 1 °C and 7 ± 1 °C until 20 d. At 3 ± 1 °C, L. monocytogenes behavior was not affected by packaging or storage time. At 7 ± 1 °C, the pathogen increased nearly 1 log CFU/g in the first 4 d. L. monocytogenes populations in AP were higher (P < 0.05) than in MAP. The pathogen may grow to hazardous levels in the 1st days if a temperature abuse occurs. Considering the acceptability by the consumers, the shelf life of MA stored at 3 ± 1 °C was 4.4 d for AP, 8.1 d for VP, and 10.4 d for MAP. The sensory shelf life established based on sensory spoilage is shorter than the shelf life to maintain the population of L. monocytogenes in safe levels.  相似文献   

9.
Queso Fresco (QF), a fresh Hispanic-style cheese, is often associated with Listeria monocytogenes outbreaks and recalls. Queso Fresco's susceptibility to bacterial contamination is partially due to its high pH and moisture content as well as Listeria's tolerance for the salt content typical for QF. Nine different brands of US QF, 2 packages from 4 different lots (to account for temporal variability), were sampled. The pH, salt content, and moisture content were analyzed in addition to microbial testing including yeasts and molds, coliforms, lactic acid bacteria enumeration, and L. monocytogenes counts. The cheeses were also inoculated with a cocktail of 5 food and human isolates of food-borne outbreak-associated Listeria monocytogenes strains to evaluate how the differences between brands influenced Listeria growth. Three of the cheeses underwent additional genus-level microbial analysis using extracted 16S rDNA, allowing for phylogenetic analysis between bacterial taxa including diversity and relative abundance. We found little variation between the sampled QF pH (range = 6.62–6.86), salt content (1.53–2.01%), and moisture content (43.90–54.50%). Yeasts and molds were below the detection limit of enumeration in all of the cheeses and coliforms were below the detection limit across the first 3 lots, but were detected at varying levels in the fourth lot (>3.0 most probable number/g) for 3 of the brands. Listeria monocytogenes was not isolated after enrichment in any of the samples. All cheeses tested positive for the presence of lactic acid bacteria, with only 1 of the cheeses being labeled as produced with added cultures having substantial counts. Fourteen days after inoculation with L. monocytogenes, at least 2.5 log10 cfu/g of growth was found for all QF brands stored at 4°C. Microbial genus analysis showed that, among the 3 brands, the microbial community was more similar within brand than when compared with the other 2 brands. Thermus, Anoxybacillus, and Streptococcus accounted for the dominant genera of brands A, B, and C, respectively. These variations within the microbial community may account for sensory differences and help manufacturers determine quality control consistency more readily than culture-based methods.  相似文献   

10.
We investigated the formation of single and mixed species biofilms of Listeria monocytogenes strains EGD-e and LR-991, with Lactobacillus plantarum WCFS1 as secondary species, and their resistance to the disinfectants benzalkonium chloride and peracetic acid. Modulation of growth, biofilm formation, and biofilm composition was achieved by addition of manganese sulfate and/or glucose to the BHI medium. Composition analyses of the mixed species biofilms using plate counts and fluorescence microscopy with dual fluorophores showed that mixed species biofilms were formed in BHI (total count, 8-9 log10 cfu/well) and that they contained 1-2 log10 cfu/well more L. monocytogenes than L. plantarum cells. Addition of manganese sulfate resulted in equal numbers of both species (total count, 8 log10 cfu/well) in the mixed species biofilm, while manganese sulfate in combination with glucose, resulted in 1-2 log10 more L. plantarum than L. monocytogenes cells (total count, 9 log10 cfu/well). Corresponding single species biofilms of L. monocytogenes and L. plantarum contained up to 9 log10 cfu/well. Subsequent disinfection treatments showed mixed species biofilms to be more resistant to treatments with the selected disinfectants. In BHI with additional manganese sulfate, both L. monocytogenes strains and L. plantarum grown in the mixed species biofilm showed less than 2 log10 cfu/well inactivation after exposure for 15 min to 100 μg/ml benzalkonium chloride, while single species biofilms of both L. monocytogenes strains showed 4.5 log10 cfu/well inactivation and single species biofilms of L. plantarum showed 3.3 log10 cfu/well inactivation. Our results indicate that L. monocytogenes and L. plantarum mixed species biofilms can be more resistant to disinfection treatments than single species biofilms.  相似文献   

11.
Dairy product recalls and dairy-related illnesses are often the result of contamination with Listeria monocytogenes, which can occur throughout the dairy production and supply chains. The use of antimicrobial compounds is one practical approach for controlling pathogen survival and growth in foods. The goal of this study was to use fluid milk as a model system to identify listeristatic or listericidal treatments that show promise for application in fluid milk and for further evaluation in other dairy products (e.g., cheese). Caprylic acid (CA), ε-polylysine (EPL), hydrogen peroxide, lauric arginate (LAE), and sodium caprylate (SC) were added individually or in combination to whole milk inoculated with L. monocytogenes at ?4 log10 cfu/mL. Samples were stored at 7°C for 21 d, and L. monocytogenes counts were determined weekly. Inhibitory concentrations of LAE (800 mg/L) and EPL (100–400 mg/L), as well as SC and CA (3,200 mg/L each), were identified. The addition of EPL at 800 mg/L reduced L. monocytogenes counts by >3 log10 cfu/mL from initial inoculation levels after 21 d. Addition of hydrogen peroxide to milk reduced counts by >3 log10 cfu/mL from initial inoculation within 24 h (400 and 800 mg/L) or by d 7 (200 mg/L). Although the combinatory treatments of EPL + CA, EPL + LAE, and LAE + SC were characterized as indifferent, EPL + SC worked synergistically to reduce L. monocytogenes populations in milk over 21 d. Overall, these data identify potential antimicrobial treatments to control L. monocytogenes in milk and serve as a foundation for the continued development of antimicrobial controls for L. monocytogenes in dairy products.  相似文献   

12.
In this work, the effect of active coating on the shelf life of low-moisture Mozzarella cheese packaged in air and modified atmosphere (MAP) was studied. The active coating was based on sodium alginate (2%, wt/vol) and potassium sorbate (1%, wt/vol). The MAP was made up of 75% CO2 and 25% N2 (MAP1), 25% CO2 and 75% N2 (MAP2), or 50% CO2 and 50% N2 (MAP3). The product quality decay was assessed by monitoring microbiological and sensory changes during storage at 4, 8, and 14°C. Results showed that the combination of active coating and MAP was able to improve the preservation of low-moisture Mozzarella cheese. Specifically, the shelf life increased up to 160 d for samples stored at 4°C, and 40 and 11 d for those at 8 and 14°C, respectively. A faster quality decay for untreated samples packaged in air was observed. In particular, the Pseudomonas spp. growth and the appearance of molds were responsible for product unacceptability. The combination of active coating and MAP represents a strategic solution to prolong the shelf life of low-moisture Mozzarella cheese and to ensure the safety of the product under thermal abuse conditions.  相似文献   

13.
《Food microbiology》2002,19(1):97-103
The effect of oregano essential oil and film permeability on the behaviour of Salmonella typhimurium in sterile and naturally contaminated beef fillets stored under aerobic, modified atmosphere consisting of 40% CO2 /30% O2 /30% N2 (MAP) and a vacuum packaged (VP) environment was studied during storage at 5°C. In samples without oregano essential oil, the pathogen survived under all storage conditions. Addition of oregano essential oil at a concentration of 0·8% v/w resulted in an initial reduction of 1–2 log10 cfu g−1 of the majority of the microbial population of meat with lactic acid bacteria and S. typhimurium showing the greatest reductions in all gaseous environments regardless of film permeability. The use of VP/MAP at chill temperatures in conjunction with oregano essential oil as a means of controlling spoilage and safety of meat is discussed.  相似文献   

14.
Modified atmosphere packaging (MAP) studies on microbiological and sensory analysis were conducted to extend the shelf life of ready-to-bake pizza stored at 7±1°C. The gas combinations used were: atm1: air (control), atm2: CO2 (100%), atm3: N2 (100%), atm4: 50% CO2/50% N2. Total plate count (TPC), yeasts/molds (Y/M), coliforms, lactic acid bacteria (LAB), psychrotrophs, and anaerobic spore formers were estimated at time intervals of 0, 5, 10, 15, and 20 days. TPC and LAB of pizza samples (atm1) reached 7.10 and 8.14 log CFU/g after 10 days of storage, respectively. Coliforms, psychrotrophs, and Y/M were significantly higher (p<0.05) for pizza samples stored in atm1 than other storage conditions of MAP. Finally, counts of anaerobic spore formers were low (<3 log CFU/g) irrespective of the packaging conditions throughout the entire storage period. It was concluded that among the 4 atmospheres examined, atm2 (100% CO2) was the best, followed by atm4>atm3>atm1 respectively, in descending order. MAP conditions under this study may extend shelf life of pizza to considerable amount of time.  相似文献   

15.
Abstract: Meatballs were prepared by mixing ground beef and spices and inoculated with E. coli O157:H7, L. monocytogenes, and S. enteritidis before packaged in modified atmosphere (3% O2+ 50% CO2+ 47% N2) or aerobic conditions. The packaged samples were irradiated at 0.75, 1.5, and 3 kGy doses and stored at 4 °C for 21 d. Survival of the pathogens, total plate count, lipid oxidation, color change, and sensory quality were analyzed during storage. Irradiation at 3 kGy inactivated all the inoculated (approximately 106 CFU/g) S. enteritidis and L. monocytogenes cells in the samples. The inoculated (approximately 106 CFU/g) E. coli O157:H7 cells were totally inactivated by 1.5 kGy irradiation. D10‐values for E. coli O157:H7, S. enteritidis, and L. monocytogenes were 0.24, 0.43, and 0.41 kGy in MAP and 0.22, 0.39, and 0.39 kGy in aerobic packages, respectively. Irradiation at 1.5 and 3 kGy resulted in 0.13 and 0.36 mg MDA/kg increase in 2‐thiobarbituric acid‐reactive substances (TBARS) reaching 1.02 and 1.49 MDA/kg, respectively, on day 1. Irradiation also caused significant loss of color and sensory quality in aerobic packages. However, MAP effectively inhibited the irradiation‐induced quality degradations during 21‐d storage. Thus, combining irradiation (3 kGy) and MAP (3% O2+ 50% CO2+ 47% N2) controlled the safety risk due to the potential pathogens and maintained qualities of meatballs during 21‐d refrigerated storage. Practical Application: Combined use of gamma irradiation and modified atmosphere packaging (MAP) can maintain quality and safety of seasoned ground beef (meatball). Seasoned ground beef can be irradiated at 3 kGy and packaged in MAP with 3% O2+ 50% CO2+ 47% N2 gas mixture in a high barrier packaging materials. These treatments can significantly decrease risk due to potential pathogens including E. coli O157:H7, L. monocytogenes, and S. enteritidis in the product. The MAP would reduce the undesirable effects of irradiation on quality, and extend the shelf life of the product for up to 21 d at 3 °C.  相似文献   

16.
Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5°C, respectively). In cheese inoculated with 4 log10 cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log10 cfu/g in all treatments over 60 d. When inoculated with 5 log10 cfu/g at 3 mo of cheese age, L. monocytogenes counts in Cheddar cheese were also reduced during storage, but by less than 1.5 log10 cfu/g after 50 d. However, cheese with a 50% reduction in sodium without KCl had higher counts than full-sodium cheese at the end of 50 d of incubation at 4°C when inoculated at 3 mo. When inoculated at 8 mo postmanufacture, this trend was only observed in 50% reduced sodium with KCl, for cheese manufactured with both cultures. This enhanced survival for 50% reduced-sodium cheese was not seen when a higher incubation temperature (12°C) was used when cheese was inoculated at 3 mo of age and monitored for 27 d (no difference in treatments was observed at this incubation temperature). In the event of postprocessing contamination during later stages of ripening, L. monocytogenes was capable of survival in Cheddar cheese regardless of which culture was used, whether or not sodium had been reduced by as much as 50% from standard concentrations, or if KCl had been added to maintain the effective S/M of full-sodium Cheddar cheese.  相似文献   

17.
The effect of different modified atmosphere packaging (MAPs) on physical, chemical, microbiological and sensory changes of sea bass fillets when stored at 4 °C and standard light conditions was investigated for up to 21 days and compared to a control batch stored in overwrap. Sea bass fillets were packed using different CO2 and N2 combinations (40% CO2–60% N2; 50% CO2–50% N2; 60% CO2–40% N2), and quality assessment was based on instrumental, chemical, microbiological and sensory analysis. The results showed that MAP extended shelf‐life of sea bass fillets from 7 days (overwrap packaging) to 14 days. Drip loss, pH values and thiobarbituric acid reactive substances (TBARS) measurements were higher in overwrap samples but no differences (P ≤ 0.05) were found between MAP samples. Bacteria grew most quickly and showed higher counts in overwrap samples followed by 40% CO2–60% N2; 50% CO2–50% N2 and finally 60% CO2–40% N2. Sensory analyses were in good relation with chemical and microbiological results establishing best scores and an extended shelf‐life for MAP samples especially in MAPs with high CO2 levels.  相似文献   

18.
We evaluated the influence of ultrahigh pressure homogenization (UHPH) treatment applied to milk containing Staphylococcus aureus CECT 976 before cheese making, and the benefit of applying a further high hydrostatic pressure (HHP) treatment to cheese. The evolution of Staph. aureus counts during 30 d of storage at 8°C and the formation of staphylococcal enterotoxins were also assessed. Milk containing approximately 7.3 log10 cfu/mL of Staph. aureus was pressurized using a 2-valve UHPH machine, applying 330 and 30 MPa at the primary and the secondary homogenizing valves, respectively. Milk inlet temperatures (Tin) of 6 and 20°C were assayed. Milk was used to elaborate soft-curd cheeses (UHPH cheese), some of which were additionally submitted to 10-min HHP treatments of 400 MPa at 20°C (UHPH+HHP cheese). Counts of Staph. aureus were measured on d 1 (24 h after manufacture or immediately after HHP treatment) and after 2, 15, and 30 d of ripening at 8°C. Counts of control cheeses not pressure-treated were approximately 8.5 log10 cfu/g showing no significant decreases during storage. In cheeses made from UHPH treated milk at Tin of 6°C, counts of Staph. aureus were 5.0 ± 0.3 log10 cfu/g at d 1; they decreased significantly to 2.8 ± 0.2 log10 cfu/g on d 15, and were below the detection limit (1 log10 cfu/g) after 30 d of storage. The use of an additional HHP treatment had a synergistic effect, increasing reductions up to 7.0 ± 0.3 log10 cfu/g from d 1. However, for both UHPH and UHPH+HHP cheeses in the 6°C Tin samples, viable Staph. aureus cells were still recovered. For samples of the 20°C Tin group, complete inactivation of Staph. aureus was reached after 15 d of storage for both UHPH and UHPH+HHP cheese. Staphylococcal enterotoxins were found in controls but not in UHPH or UHPH+HHP treated samples. This study shows a new approach for significantly improving cheese safety by means of using UHPH or its combination with HHP.  相似文献   

19.
The present study describes the effects of modified atmosphere packaging (MAP) on shelf-life extension, chemical, microbiological, and sensory properties of Domiati cheese. Five different MAP were studied [10% CO2/90% N2 (G1), 15% CO2/85% N2 (G2), 25% CO2/75% N2 (G3), 100% CO2 (G4), and 100% N2 (G5)]. Control samples were packaged in air (CA) and under vacuum. In both groups of cheeses, chemical analysis was significantly affected by MAP during cold storage. Ripening indexes were significantly affected by MAP during cold storage. Microbiological data showed that G4, followed by G5, were the most effective groups inhibiting the growth of total aerobic mesophilic and psychrotrophic bacteria, and yeasts and molds until the end of storage. Sensory evaluation was significantly affected by MAP and storage period, at 45 d CA cheese samples were judged as unacceptable. The best sensory properties were obtained in G5, G4, and G3 treatments, and recorded a relatively higher sensory evaluation scores. The best shelf-life extension was obtained in G5, G4, and G3 treatments.  相似文献   

20.
Quality and safety of turbot fillets under modified atmosphere packaging (MAP) were assessed by microbial (total viable counts), physical (drip loss, pH, colour CIE Lab) and chemical parameters (total volatile basic nitrogen (TVBN), trimethylamine nitrogen (TMAN), biogenic amine contents). Three different atmospheres (MAP 1, 10/40/50 % O2/CO2/N2; MAP 2, 10/60/30 % O2/CO2/N2; MAP 3, 10/80/10 % O2/CO2/N2) were tested. Packaged turbot fillets were stored at 2?±?1 °C and monitored over 30 days, at intervals of 5 days. Fillets from the control group, packaged with air (AIR), were the first to present signs of degradation reaching rejection threshold values for all evaluated parameters. In MAP fillets, total bacterial count was lower than 106 cfu/g for a longer period. After 10 days of storage, MAP and AIR fillets showed significant differences (p?<?0.05) on the values of TVBN, TMAN and biogenic amines. MAP fillets presented a higher drip loss, and fillets in AIR became more yellowish (upper b* values) while those in MAP looked whitish for an increased period (upper L* values). All microbial, chemical and physical traits revealed the protective effect of the different MAP studied, especially those with a higher percentage of CO2. MAP application added, at least, 5 days to shelf life of turbot fillets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号