首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The physicochemical, rheological and sensory attributes of a low‐fat Domiati cheese produced using carboxymethylcellulose (CMC), a hydrocolloid, at 0.4, 0.6, 0.8 and 1% (w?w) were examined during the ripening period. Results indicated that, as the carboxymethylcellulose content of cheese milk increased, cheese yield and moisture of low‐fat Domiati cheese significantly increased but the protein, salt and fat values significantly decreased. Rheological parameters were significantly lower in cheeses made with CMC. With regard to the sensory properties of the cheeses, low‐fat Domiati cheese made with 1% (w?w) CMC recorded the highest scores for sensory attributes.  相似文献   

2.
The physicochemical, rheological and sensory properties during the storage of Kariesh cheeses made with 0.1, 0.2, 0.3, 0.4 or 0.5 g wheat bran/100 g milk were evaluated at 0, 7 and 15 days. The cheeses with 0.5 g wheat bran/100 g milk had a significantly (P < 0.01) higher yield and moisture content, and lower pH and protein content than the control. No significant differences (P > 0.01) in salt and ash contents were observed among the cheeses studied. Texture profile analysis showed that the rheological characteristics decreased significantly in cheeses made with wheat bran. These results suggested that wheat bran (up to 0.4%) can be used to produce a fibre fortified Kariesh cheese.  相似文献   

3.
Pasteurized (65°C, 30 min), pressurized (400 MPa, 22°C, 15 min) and pasteurized–pressurized milks were used for reduced-fat (approximately 32% of total solids) cheese production. Pressurization of milk increased the yield of reduced-fat cheese through an enhanced β-lactoglobulin and moisture retention. In addition, pressurisation of pasteurized skim milk improved its coagulation properties. The cheeses made from pasteurized–pressurized and pressurized milks showed a faster rate of protein breakdown than the cheese made from pasteurized milk, that might be mainly attributed to a higher level of residual rennet. Hardness of the experimental cheeses, as determined by both the sensory panel and instrumental analyses, decreased as the moisture content and proteolytic degradation of the cheese increased (pasteurized>pressurized>pasteurized–pressurized). In general terms, pressurization of reduced-fat milk prior to cheese-making improved cheese texture and thus accounted for a higher overall acceptability, except for the cheeses made from pasteurized–pressurized milk at 60 d of ripening, whose acceptability score was adversely affected by bitterness.  相似文献   

4.
Compositional changes in raw and pasteurized cream and unconcentrated sweet cream buttermilk (SCB) obtained from a local dairy were investigated over 1 yr. Total phospholipid (PL) composition in SCB ranged from 0.113 to 0.153%. Whey protein denaturation in pasteurized cream over 1 yr ranged from 18 to 59%. Pizza cheese was manufactured from milk standardized with condensed SCB (∼34.0% total solids, 9.0% casein, 17.8% lactose). Effects of using condensed SCB on composition, yield, PL recovery, and functional properties of pizza cheese were investigated. Cheesemilks were prepared by adding 0, 2, 4, and 6% (wt/wt) condensed SCB to part-skim milk, and cream was added to obtain cheesemilks with ∼11.2 to 12.7% total solids and casein:fat ratio of ∼1. Use of condensed SCB resulted in a significant increase in cheese moisture. Cheese-making procedures were modified to obtain similar cheese moisture contents. Fat and nitrogen recoveries in SCB cheeses were slightly lower and higher, respectively, than in control cheeses. Phospholipid recovery in cheeses was below 40%. Values of pH and 12% trichloro-acetic acid-soluble nitrogen were similar among all treatments. Cheeses made from milk standardized with SCB showed less melt and stretch than control cheese, especially at the 4 and 6% SCB levels. Addition of SCB significantly lowered free oil at wk 1 but there were no significant differences at wk 2 and 4. Use of SCB did not result in oxidized flavor in unmelted cheeses. At low levels (e.g., 2% SCB), addition of condensed SCB improved cheese yield without affecting compositional, rheological, and sensory properties of cheese.  相似文献   

5.
The aim of this study was to evaluate the milk properties and the yield and sensory properties of Cantal cheese made with milk from Holstein or Montbéliarde cows milked once or twice daily. Sixty-four grazing cows [32 Holstein (H) and 32 Montbéliarde (M) cows] in the declining phase of lactation (157 d in milk) were allocated to 1 of 2 equivalent groups milked once daily (ODM) or twice daily (TDM) for 7 wk. The full-fat raw milk collected during 24 h from the 4 groups of cows (M-TDM, M-ODM, H-TDM, and H-ODM) was pooled and processed into Cantal cheese 4 times during the last 4 wk of the experimental period. In all, 16 cheeses were made (2 milking frequencies × 2 breeds × 4 replicates) and analyzed after a ripening period of 15 and 28 wk. The results showed that for both breeds, the pooled milk content of fat, whey protein, casein, total protein, and phosphorus as well as rennet clotting time and curd firming time were significantly higher with ODM cows, whereas the casein-to-total protein ratio was lower, and lactose, urea, calcium, and free fatty acids contents of milk remained unchanged. The acidification and draining kinetics of the cheese as well as cheese yields and the chemical and rheological properties of the ripened cheese were not significantly modified by milking frequency. For both breeds, the cheeses derived from ODM cows had a slightly yellower coloration but the other sensory attributes, except for pepper odor, were not significantly affected by milking frequency, thereby demonstrating that ODM does not have an adverse effect on the sensory properties of Cantal cheese. Compared with that of Holstein cows, milk from Montbéliarde cows resulted in a higher cheese yield (+1.250 kg/100 kg of milk) and ripened cheeses with lower pH, dry matter, calcium, sodium chloride, and water-soluble nitrogen concentrations. These cheeses had also a less firm and more elastic texture, a more acidic taste, and a yogurt/whey aroma.  相似文献   

6.
The aim of this research was to study changes in the microbial populations, free AA profile, biogenic amine content, and sensory characteristics of ripened cheeses (100 and 180 d) produced in different seasons (summer, autumn, winter, and spring) from pasteurized sheep milk from 8 commercial flocks fed hay or silage diets. Twenty-one individual AA and 6 biogenic amines were determined by ultra-high performance liquid chromatography. Type of conserved forage for sheep feeding did not affect the variables studied, which is of great interest because hay and silage are low-cost ingredients for sheep feeding. Proteolysis led total free AA concentrations ranging between 35,179.26 and 138,063.71 mg/kg of cheese at 180 d of ripening. γ-Aminobutyric acid, which has been associated with beneficial effects on human health, was the second most abundant AA in all cheese samples, accounting for 15% of total free AA. Spring cheeses showed 2-fold higher concentrations of γ-aminobutyric acid than summer and autumn cheeses at the end of ripening. Overall, spring, winter, and autumn cheeses had lower average concentration of biogenic amines (431.99 mg/kg of cheese) than summer cheeses (825.70 mg/kg of cheese) as well as better sensory characteristics. Therefore, this study could provide the dairy industry with useful information for producing cheeses with valuable nutritional and sensory quality for consumers.  相似文献   

7.
8.
《Journal of dairy science》2022,105(11):8734-8749
Camel (CM) milk is used in variety of ways; however, it has inferior gelling properties compared with bovine milk (BM). In this study, we aimed to investigate the physicochemical, functional, microstructural, and rheological properties of low-moisture part-skim (LMPS) mozzarella cheese, made from BM, or BM mixed with 15% CM (CM15%) or 30% CM (CM30%), at various time points (up to 60 d) of storage at 4°C after manufacture. Low-moisture part-skim mozzarella cheeses using CM15% and CM30% had high moisture and total Ca contents, but lower soluble Ca content. Compared with BM cheese, CM15% and CM30% LMPS mozzarella cheese exhibited higher proteolysis rates during storage. Adding CM affected the color properties of LMPS mozzarella cheese manufactured from mixed milk. Scanning electron microscopy images showed that the microstructure of CM15% and CM30% cheeses had smooth surfaces, whereas the BM cheese microstructures were rough with granulated surfaces. Low-moisture part-skim mozzarella cheeses using CM15% and CM30% showed significantly lower hardness and chewiness, but higher stringiness than BM cheese. Compared with BM cheese, CM15% and CM30% cheeses showed lower tan δ levels during temperature surges, suggesting that the addition of CM increased the meltability of LMPS mozzarella cheese during temperature increases. Camel milk addition affected the physicochemical, microstructural, and rheological properties of LMPS mozzarella cheese.  相似文献   

9.
This study aimed to assess and compare the nutritional, technological, and sensory characteristics of Minas fresh cheese made with goat milk, cow milk, or a mixture of the two stored in cold conditions for 21 d. The yield and centesimal composition of the cheeses were not affected by the type of milk used in their preparation. Reductions were observed in the moisture content, pH, proteolysis index, and instrumental hardness; moreover, increases were observed in the syneresis, acidity index, and depth of proteolysis index in all cheeses. The percentages of caprylic, capric, oleic, and linoleic fatty acids were higher in goat milk cheese and cheese made with a mixture of goat and cow milk compared with cow milk cheese, and a sensory evaluation revealed differences in color, flavor, and aroma between the cheeses. The preparation of Minas fresh cheese with a mixture of goat and cow milk can be a viable alternative for dairy products in the market that can be characterized as high-quality products that meet consumer demands.  相似文献   

10.
The effect of high-temperature heat treatment (HH), microfiltration (MF) and ultrafiltration (UF) on the Edam vat milk composition, processing and cheese yield, ripening and functional characteristics were studied. The protein level of the MF and UF cheese milk was adjusted to 42 g/kg, whereas the level in the reference (REF) and HH milk was 34 g/kg. The cheese yield from ultrafiltration and microfiltration milk (CYv) was 12.8 g/100 g milk, yield from reference and high-temperature heat treatment milk was 10.1 and 10.2 g/100 g milk, respectively. The adjusted cheese yield (ACYr), calculated from raw milk, was lowest when MF was used. The pre-concentration method had little effect on the starter activity: no differences were observed in the pH of cheeses. The compositions of the ripened cheeses were comparable. The casein to fat ratio of MF cheese was elevated, possibly due to elevated casein to fat ratio of vat milk. Even though the high-temperature heat treatment, ultrafiltration and microfiltration cheeses were harder than reference cheese, they retained their elasticity. Resilience was significantly higher with microfiltration and ultrafiltration cheeses. The sensory quality of all cheeses was considered according to specification. The pre-treatment methods had little effect on the processing characteristics, cheese quality or yield when calculated on the basis of the quantity of original milk.  相似文献   

11.
This study investigated the effect of somatic cell count (SCC) in goat milk on yield, free fatty acid (FFA) profile, and sensory quality of semisoft cheese. Sixty Alpine goats without evidence of clinical mastitis were assigned to 3 groups with milk SCC level of <500,000 (low), 500,000 to 1,000,000 (medium), and 1,000,000 to 1,500,000 (high) cells/mL. Thirty kilograms of goat milk with mean SCC levels of 410,000 (low), 770,000 (medium), and 1,250,000 (high) cells/mL was obtained for the manufacture of semisoft cheese for 2 consecutive weeks in 3 lactation stages. The composition of milk was analyzed and cheese yield was recorded on d 1. Cheese samples on d 1, 60, and 120 were analyzed for total sensory scores, flavor, and body and texture by a panel of 3 expert judges and were also analyzed for FFA. Results indicated that milk composition did not change when milk SCC varied from 214,000 to 1,450,000 cells/mL. Milk with higher SCC had a lower standard plate count, whereas coliform count and psychrotrophic bacteria count were not affected. However, milk components (fat, protein, lactose, casein, and total solids) among the 3 groups were similar. As a result, no significant differences in the yield of semisoft goat cheeses were detected. However, total sensory scores and body and texture scores for cheeses made from the high SCC milk were lower than those for cheeses made from the low and medium SCC milks. The difference in milk SCC levels also resulted in diverse changes in cheese texture (hardness, springiness, and so on) and FFA profiles. Individual and total FFA increased significantly during ripening, regardless the SCC levels. It is concluded that SCC in goat milk did not affect the yield of semisoft cheese but did result in inferior sensory quality of aged cheeses.  相似文献   

12.
The transformation of camel milk into soft cheese by using chymosin and yoghurt starter culture (Streptococcus thermophilus and Lactobacillus bulgaricus) was investigated. The cheese yield and sensory properties were related to the concentration of chymosin. A yield of 16.74 g/100 mL of milk was obtained with a chymosin concentration of 1.7 mL/L of milk. The cheeses obtained with concentrations ranging between 1.0 mL and 2.9 mL of chymosin/L of milk scored highly regarding their sensory properties and had an acceptable microbiological quality. This study demonstrated that cheesemaking from camel milk can be made successfully providing that the appropriate chymosin concentration is used; and that 1.7 mL of chymosin/L of milk was optimal.  相似文献   

13.
Garlic is a popular spice added to several edible preparations and is a remedy for a variety of ailments. Epidemeological as well as laboratory studies have shown that garlic consumption reduces certain cancer incidences in the stomach, colon, mammary, cervical, etc. This article focuses on the general chemistry, metabolism, anticarcinogenic properties, mechanism of action behind the anticarcinogenic effects, functional foods based on garlic; and future areas of research. Garlic has been shown to metabolized into N-aceryl-S-allyl cysteine, allyl mercaptan, diallyl disulfide, diallyl sulfide, diallyl sulfoxide, diallyl sulfone, and allyl methyl sulfide. Garlic has been thought to bring about its anticarcinogenic effect through a number of mechanisms, such as the scavenging of radicals, increasing gluathione levels, increasing the activities of enzymes such as glutathione S-transferase, catalase, inhibition of cytochrome p4502E1, DNA repair mechanisms, prevention of chromosomal damage etc. Future research should standardize the dosage of garlic and type, ie., whether it should be taken fresh, cooked, or aged. The formulation of odorless functional foods with the retention of anticarcinogenic activity should be further studied.  相似文献   

14.
The objectives of this study were (1) to assess the effect of a denatured whey protein concentrate (DWPC) and its fractions on cheese yield, composition, and rheological properties, and (2) to separate the direct effect of the DWPC or its fractions on cheese rheological properties from the effect of a concomitant increase in cheese moisture. Semihard cheeses were produced at a laboratory scale, and mechanical properties were characterized by dynamic rheometry. Centrifugation was used to induce a moisture gradient in cheese to separate the direct contribution of the DWPC from the contribution of moisture to cheese mechanical properties. Cheese yield increased and complex modulus (G*) decreased when the DWPC was substituted for milk proteins in milk. For cheeses with the same moisture content, the substitution of denatured whey proteins for milk proteins had no direct effect on rheological parameters. The DWPC was fractionated to evaluate the contribution of its different components (sedimentable aggregates, soluble component, and diffusible component) to cheese yield, composition, and rheological properties. The sedimentable aggregates were primarily responsible for the increase in cheese yield when DWPC was added. Overall, moisture content explained to a large extent the variation in cheese rheological properties depending on the DWPC fraction. However, when the effect of moisture was removed, the addition of the DWPC sedimentable fraction to milk increased cheese complex modulus. Whey protein aggregates were hypothesized to act as active fillers that physically interact with the casein matrix and confer rigidity after pressing.  相似文献   

15.
《Journal of dairy science》2021,104(9):9543-9555
The aim of the present study was to compare the effect of dietary tannins on cow cheese quality in 2 different grazing seasons in the Mediterranean. Two experiments were performed on 14 dairy cows reared in an extensive system. The first experiment took place in the wet season (WS), and the second experiment took place in the dry season (DS). In the WS and DS experiments, cows freely grazed green pasture or dry stubbles, respectively, and the diet was supplemented with pelleted concentrate and hay. In both experiments, the cows were divided into 2 balanced groups: a control group and a group (TAN) receiving 150 g of tannin extract/head per day. After 23 d of dietary treatment, individual milk was collected, processed into individual cheeses, and aged 25 d. Milk was analyzed for chemical composition, color parameters, and cheesemaking aptitude (laboratory cheese yield and milk coagulation properties). Cheese was analyzed for chemical composition, proteolysis, color parameters, rheological parameters, fatty acid profile, and odor-active volatile compounds. Data from the WS and DS experiments were statistically analyzed separately with an analysis of covariance model. In the WS experiment, dietary tannin supplementation had no effect on milk and cheese parameters except for a reduced concentration of 2-heptanone in cheese. In the DS experiment, TAN milk showed lower urea N, and TAN cheese had lower C18:1 trans-10 concentration and n-6:n-3 polyunsaturated fatty acid ratio compared with the control group. These differences are likely due to the effect of tannins on rumen N metabolism and fatty acid biohydrogenation. Dietary tannins may differently affect the quality of cheese from Mediterranean grazing cows according to the grazing season. Indeed, tannin bioactivity on rumen metabolism seems to be enhanced during the dry season, when diet is low in protein and rich in acid detergent fiber and lignin. The supplementation dose used in this study (1% of estimated dry matter intake) had no detrimental effects on cheese yield or cheesemaking parameters. Also, it is unlikely that sensorial characteristics would be affected by this kind of dietary tannin supplementation.  相似文献   

16.
Feta cheese was made from ewe's milk using three different levels of starter (0.20, 0.50 and 0.75%) and two draining times (6 and 20 h). Cheese made with addition of 0.75% starter had a lower pH and moisture content than the cheeses made with 0.20 and 0.50% starter. With the increase in starter level there was also an increase in cheese fat content, although the fat in dry matter remained almost constant. The lower level of starter resulted in cheese with lower protein content, while other cheese components were not significantly affected by the starter levels used. The yield of cheese made with addition of 0.75% starter was significantly lower than the yield of cheeses made with the other levels. Also, the yield of cheeses made with 6 h drainage was greater than the yield of cheeses made with 20 h drainage. In general, the organoleptic and rheological properties of cheeses were not affected by the three levels of starter used for feta cheese manufacture.  相似文献   

17.
In attempts to produce a low-fat cheese with a rheology and texture similar to that of a full-fat cheese, guar gum (within 0.0025–0.01%; w/v, final concentration) was added to low-fat milk. The obtained cheeses were characterised regarding their physicochemical, thermal, rheological and textural properties. Control cheeses were also produced with low and full-fat milk. The physicochemical properties of the guar gum modified cheeses were similar to those of the low-fat control. No significant differences were detected in the thermal properties (concerning the enthalpy and profile of water desorption) among all types of cheeses. The rheological behaviour of the 0.0025% modified cheese was very similar to the full-fat control. Overall, no trend was observed in the texture profile (hardness, cohesiveness, gumminess and elasticity) of the modified cheeses versus guar gum concentration, as well as in comparison with the control groups, suggesting that none of the studied polysaccharide concentrations simulated the textural functions of fat in Edam cheese.  相似文献   

18.
A model lipoproteic matrix able to mimic hard-type cheese was produced with controlled structural and textural properties. Changes in the microstructural and rheological properties of these model cheeses made from different milk concentrate powder, anhydrous milk fat, salt contents and pH values at renneting were characterised. Rheological properties were measured by texture profile analysis, fat globule and protein aggregate size distributions by laser light scattering. Microstructural properties of the model matrices were studied by confocal laser scanning and scanning electron microscopy.Significant differences between the matrices were found for the structural, physico-chemical and rheological parameters measured. Cheeses with higher dry matter content were significantly harder and contained more insoluble proteins than cheeses with lower dry matter content. The salt concentration and the pH at renneting had significant influence on cheese hardness and adhesiveness of rheological parameters. The model lipoproteic matrix presented air bubbles and powder aggregates which could not be avoided during the manufacture of products. However, compared with classic cheese making with rennet or acid coagulation, the technology used here allows model cheeses to be produced rapidly with a good reproducibility of texture.  相似文献   

19.
To establish the effect of an alternative diet on the quality of Majorero cheese, the basic physicochemical parameters, fatty acid profile, and sensory characteristics were studied. Two groups of 20 Majorero goats were fed 2 different diets: a forage diet (DF), which had a high ratio of long fiber to concentrates (65:35), and a concentrate diet (DC), with a low ratio of long fiber to concentrates (35:65). The DF dietary fiber was supplied by native forages adapted to arid land. A total of 42 Majorero goat cheeses were used for this study: 21 in the DF group and 21 in the DC group. Seven cheeses from each group were tested after 2, 15, and 60 d of ripening. The milk produced by goats fed the DF diet had a higher fat concentration. No significant differences were observed in the milk fatty acid profile. The diet affected the chemical composition of the cheese in pH and fat content, and fat was significantly higher in cheeses made from DF milk than those from DC milk. Dietary characteristics had important effects on the medium-chain fatty acid composition (C6 to C14) of the cheese fat, giving DF cheeses the specific goat's milk flavor that is sought after for this type of cheese. The fatty acid composition (%) differed substantially among different ripening times. The DF cheeses were more appreciated by the panelists, as they had a greater variety of odors and flavors than the DC cheeses. The DF hard cheeses were described as having vegetable and fruity tones as well as tones of hay and dried fruit.  相似文献   

20.
The effect of adding either skim milk or a commercial dry milk protein concentrate (MPC) to whole milk on the composition, yield, and functional properties of Mexican Oaxaca cheese were investigated. Five batches of Oaxaca cheeses were produced. One batch (the control) was produced from whole milk containing 3.5% fat and 9% nonfat solids (SNF). Two batches were produced from milk standardized with skim milk to 2.7 and 1.8% fat, maintaining the SNF content at 9%. In the other 2 batches, an MPC (40% protein content) was used to standardize the milk to a SNF content of 10 and 11%, maintaining the milk fat content at 3.5%. The use of either skim milk or MPC caused a significant decrease in the fat percentage in cheese. The use of skim milk or MPC showed a nonsignificant tendency to lower total solids and fat recoveries in cheese. Actual, dry matter, and moisture-adjusted cheese yields significantly decreased with skim milk addition, but increased with MPC addition. However, normalized yields adjusted to milk fat and protein reference levels did not show significant differences between treatments. Considering skim milk-added and control cheeses, actual yield increased with cheese milk fat content at a rate of 1.34 kg/kg of fat (R = 0.88). In addition, cheese milk fat and SNF:fat ratio proved to be strong individual predictors of cheese moisture-adjusted yield (r2 ≈ 0.90). Taking into account the results obtained from control and MPC-added cheeses, a 2.0-kg cheese yield increase rate per kg of milk MPC protein was observed (R = 0.89), with TS and SNF being the strongest predictors for moisture adjusted yield (r2 ≈ 0.77). Reduced-fat Oaxaca cheese functionality differed from that of controls. In unmelted reduced-fat cheeses, hardness and springiness increased. In melted reduced-fat cheeses, meltability and free oil increased, but stretchability decreased. These changes were related to differences in cheese composition, mainly fat in dry matter and calcium in SNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号