首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
《Journal of dairy science》2022,105(8):6616-6627
The objective of this experiment was to compare the effects of calcareous marine algae (CMA; Acid Buf, Celtic Sea Minerals) with a limestone-based control on feed intake, milk production, energy balance, serum mineral metabolites, and inflammatory markers in transition dairy cows. Twenty-two multiparous and 10 primiparous cows were assigned to 2 treatments from 25 d before expected parturition until 42 d postpartum. Cows were assigned to treatment according to a randomized complete block design based on parity, pre-experimental body condition score, previous 305-d milk yield, and either fat + protein yield (for multiparous cows) or predicted transmitting ability for milk yield and fat + protein yield (for primiparous cows). Cows were fed a negative dietary cation-anion difference [?50 mEq/kg] total mixed ration (TMR) based on corn silage, grass silage, and straw during the prepartum period and a 50:50 forage:concentrate TMR based on grass silage, corn silage, and concentrate during the postpartum period. The 2 dietary treatments consisted of a control (CON), which contained limestone as the primary calcium source, and CMA, in which limestone was replaced by CMA at 0.42% and 0.47% of dry matter for the pre- and postpartum periods, respectively. The dietary treatments were fed as 2 different concentrate pellets added to the TMR. Cows fed the CMA diet had higher dry matter intake in both the prepartum (+1.08 kg) and postpartum (+0.94 kg) periods compared with cows fed the CON diet. Fat yield (+0.11 kg), fat concentration (+0.43%), and 4% fat-corrected milk (+1.56 kg) were higher in cows fed CMA than in cows fed CON. The concentration of plasma serum amyloid A was reduced and that of serum P was increased on the CMA treatment compared with the CON treatment. These findings demonstrate the benefits of supplementing CMA to dairy cows during the transition period compared with a CON treatment containing limestone as the primary Ca source.  相似文献   

2.
《Journal of dairy science》2022,105(9):7787-7804
We investigated effects of rumen-protected Met (RPM) during a heat stress (HS) challenge on (1) hepatic abundance of mTOR, insulin, and antioxidant signaling proteins, (2) enzymes in 1-carbon metabolism, and (3) innate immunity. Holstein cows (n = 32; mean ± standard deviation, 184 ± 59 d in milk) were randomly assigned to 1 of 2 environmental groups, and 1 of 2 diets [total mixed ration (TMR) with RPM (Smartamine M; 0.105% dry matter as top-dress) or TMR without (CON); n = 16/diet] in a split-plot crossover design. There were 2 periods with 2 phases. During phase 1 (9 d), all cows were in thermoneutral conditions (TN; temperature-humidity index = 60 ± 3) and fed ad libitum. During phase 2 (9 d), half the cows (n = 8/diet) were exposed to HS using electric heat blankets. The other half (n = 8/diet) remained in TN, but was pair-fed to HS counterparts. After a 14-d washout and 7-d adaptation period, the study was repeated (period 2) and environmental treatments were inverted relative to phase 2, but dietary treatments were the same. Blood was collected on d 6 of each phase 2 to measure immune function and isolate whole-blood RNA. Liver biopsies were performed at the end of each period for cystathione β-synthase (CBS) and methionine adenosyltransferase activity, glutathione concentration, and protein abundance. Data were analyzed using PROC MIXED in SAS. Abundance of CUL3, inhibitor of antioxidant responses, tended to be downregulated by HS suggesting increased oxidative stress. Heat-shock protein 70 abundance was upregulated by HS. Phosphorylated mTOR abundance was greater overall with RPM, suggesting an increase in pathway activity. An environment × diet (E × D) effect was observed for protein kinase B (AKT), whereas there was a tendency for an interaction for phosphorylated AKT. Abundance of AKT was upregulated in CON cows during HS versus TN, this was not observed in RPM cows. For phosphorylated AKT, tissue from HS cows fed CON had greater abundance compared with all other treatments. The same effect was observed for EIF2A (translation initiation) and SLC2A4 (insulin-induced glucose uptake). An E × D effect was observed for INSR due to upregulation in CON cows during HS versus TN cows fed CON or RPM. There was an E × D effect for CBS, with lower activity in RPM versus CON cows during HS. The CON cows tended to have greater CBS during HS versus TN. An E × D effect was observed for methionine adenosyltransferase, with lower activity in RPM versus CON during HS. Although activity increased in CON during HS versus TN, RPM cows tended to have greater activity during TN. Neutrophil and monocyte oxidative burst and monocyte phagocytosis decreased with HS. An (E × D) effect was observed for whole-blood mRNA abundance of CBS, SOD1 and CSAD; RPM led to upregulation during TN versus HS. Regardless of diet, CDO1, CTH, and SOD1 decreased with HS. Although HS increased hepatic HSP70 and seemed to alter antioxidant signaling, feeding RPM may help cows maintain homeostasis in mTOR, insulin signaling, and 1-carbon metabolism. Feeding RPM also may help maintain whole-blood antioxidant response during HS, which is an important aspect of innate immune function.  相似文献   

3.
《Journal of dairy science》2023,106(4):3023-3042
An experiment was conducted to evaluate the effects of inorganic trace minerals (TM) and reduced levels of TM by using proteinate forms of Co, Zn, Mn, and Cu, and Se-yeast in diets of transition cows on performance, TM concentrations in colostrum, plasma, and liver, blood metabolites, antioxidant status, peripheral neutrophil activity, and oocyte quality. Thirty-two Holstein cows (22 multiparous and 10 primiparous cows) were enrolled in this study from 30 d before the expected calving date to 56 DIM. Cows were blocked according to body condition score, parity, and previous milk yield and randomly assigned to one of the following treatments: control (CON), with TM (Zn, Cu, Mn, and Co) supplied in form of sulfate and Se as sodium selenite to meet or exceed requirement estimates of the National Research Council; and proteinate trace minerals (PTM), with TM supplied bound with AA and peptides at 50% of CON levels and inorganic Se replaced with Se-yeast at 100% of CON level. Treatments were supplied until 56 DIM. Eight cows were removed from the study because of early calving (n = 3) or health issues (n = 5); thus, data of 24 cows (16 multiparous and 8 primiparous cows) were used in the statistical analysis. No differences between treatments were detected on nutrient intake or digestibility. Total excretion of purine derivatives was decreased when feeding PTM during the prepartum period. Feeding reduced levels of TM in proteinate form resulted in greater yield of milk (27.7 and 30.9 kg/d for CON and PTM, respectively) and protein (0.890 and 0.976 kg/d) between wk 5 and 8 of lactation. No treatment differences were detected for feed efficiency, milk somatic cell count, and milk urea nitrogen. Cows fed PTM had lower milk fat concentration during the 56 d of evaluation (4.08 and 3.74% for CON and PTM, respectively). Selenium concentration was greater in colostrum of cows fed PTM compared with CON (48.5 and 71.3 µg/L for CON and PTM, respectively), whereas Zn, Cu, and Mn concentrations were not different. Cows fed PTM showed lower liver Cu concentration compared with CON (51.4 and 73.8, respectively). Plasma concentrations of Mn and Zn were lower, but plasma Se concentration tended to be higher with PTM treatment. Feeding PTM resulted in greater blood concentrations of urea-N (16.6 and 18.2 mg/dL for CON and PTM, respectively) and β-hydroxybutyrate (0.739 and 0.940 mmol/L). Counts of lymphocytes were higher with PTM but counts of monocytes were lower in complete blood cell count. No differences were observed in serum concentrations of superoxide dismutase and glutathione peroxidase. No differences were detected in phagocytosis and oxidative burst potential of neutrophils after incubation with bacteria. Cows fed PTM had fewer viable oocytes per ovum pick-up in comparison with CON (8.00 and 11.6). Feeding PTM to transition cows may sustain performance without altering neutrophil activity despite some alterations in blood TM concentrations. More studies should be performed to evaluate production and fertility measurements when reducing TM dietary levels by using proteinate forms and Se-yeast with larger number of animals.  相似文献   

4.
Heat stress in dairy cows during the dry period impairs milk yield in the next lactation. Feeding OmniGen-AF (OG; Phibro Animal Health Corp., Teaneck, NJ) to lactating cows during heat stress may increase dry matter intake (DMI) and lowers respiration rate (RR) and rectal temperature (RT), but the effects in dry cows are not known. We hypothesized that OG supplementation before, during, and after the dry period (approximately 160 d total) would overcome the effects of heat stress and improve cow performance in the next lactation. Cows were randomly assigned to OG or control (placebo) treatments for the last 60 d in milk (DIM), based on mature-equivalent milk yield in the previous lactation. Cows were dried off 45 d before expected calving and randomly assigned to heat stress (HT) or cooling (CL) treatments. Thus, cows received dietary supplementation during late lactation before they were exposed to either CL or HT. After dry-off, treatment groups included heat stress with placebo (HT, only shade, 56 g/d of placebo, n = 17), HT with OG supplementation (HTOG, 56 g/d of OG, n = 19), cooling with placebo (CL, shade, fans, and soakers, 56 g/d of placebo, n = 16), and CL with OG supplementation (CLOG, 56 g/d of OG, n = 11). After parturition, all cows were kept under the same CL system and management, and all cows continued to receive OG or control treatment until 60 DIM. Cooling cows during the dry period reduced afternoon RT (CL vs. HT; 38.9 ± 0.05 vs. 39.3 ± 0.05°C) and RR (CL vs. HT; 45 ± 1.6 vs. 77 ± 1.6 breaths/min). Respiration rate was also decreased by OG supplementation under HT conditions (HTOG vs. HT; 69.7 ± 1.6 vs. 77.2 ± 1.6 breaths/min). An interaction was observed between OG supplementation and HT; HTOG cows tended to have lower morning RT compared with HT cows. During the dry period, OG reduced DMI relative to control cows. Birth weight was greater in calves from CL cows (CL vs. HT; 40.6 ± 1.09 vs. 38.7 ± 1.09 kg). No differences were detected among treatments in hematocrit, total protein, and body condition score. Cows offered CLOG, CL, and HTOG treatments had greater body weight during the dry period (794.9 ± 17.9, 746.8 ± 16.7, and 762.9 ± 14.9 kg, respectively) than HT cows (720 ± 16.2 kg). Gestation length was approximately 4 d longer for CL cows compared with HT cows. Cows offered CLOG, CL, and HTOG treatments produced more milk (41.3 ± 1.6, 40.7 ± 1.6, and 40.5 ± 1.6 kg/d, respectively) than HT treatment (35.9 ± 1.6 kg/d). Body weight after parturition and DMI were evaluated up to 60 DIM and averaged 661.5 ± 15.8 and 19.4 ± 0.7 kg/d, respectively, with no differences observed among treatments. These results confirm that exposure of dry cows to heat stress negatively affects milk yield in the subsequent lactation. Active cooling of dry cows and OG supplementation can reduce the negative effects of heat stress in the dry period on subsequent performance.  相似文献   

5.
The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the periparturient period (d ?28 ± 3 to 44 ± 3 relative to calving) on dry matter intake (DMI), milk production, apparent total-tract nutrient digestibility, and postpartum ovarian activity of dairy cows fed fresh diets varying in starch content. From d 28 ± 3 before the expected calving date until d 44 ± 3 after calving, 117 Holstein cows were fed diets with SCFP (SCFP; n = 59) or without (control, CON; n = 58). A common, basal, controlled-energy close-up diet (net energy for lactation: 1.43 Mcal/kg; 13.8% starch) was fed before calving. Cows within each treatment (CON or SCFP) were fed either a low- (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet from d 1 to 23 ± 3 after calving (fresh period), resulting in 4 treatment groups: LS-CON (n = 30), LS-SCFP (n = 29), HS-CON (n = 28), and HS-SCFP (n = 30). All cows were fed the HS diets from d 24 ± 3 to 44 ± 3 after calving (post-fresh period). Cows were assigned to treatment balanced for parity, body condition score, body weight, and expected calving date. Milk yield was higher for cows fed the LS diets compared with those fed the HS diets during the fresh period (34.1 vs. 32.1 kg/d), whereas DMI and 3.5% fat-corrected milk yield (FCM) were not affected by dietary starch content, and LS cows tended to lose more body condition than HS cows (?0.42 vs. ?0.35 per 21 d) during the fresh period. Overall DMI during the close-up and fresh periods did not differ between SCFP and CON cows. However, SCFP supplementation transiently increased DMI on d 1 (13.0 vs. 11.9 kg/d) and 5 (15.5 vs. 14.1 kg/d) after calving compared with CON. During the post-fresh period, SCFP cows tended to eat less than CON cows (19.8 vs. 20.6 kg/d) but had similar 3.5% FCM (44.9 vs. 43.6 kg/d), resulting in greater feed efficiency for SCFP cows (FCM/DMI; 2.27 vs. 2.13). Neither starch content of fresh diets nor SCFP supplementation affected the interval from calving to first ovulation or the incidence of double ovulation. These findings suggest that feeding low-starch diets during the fresh period can increase milk production of dairy cows during the fresh period, and that supplementation of SCFP may increase feed intake around calving and feed efficiency in the post-fresh period.  相似文献   

6.
《Journal of dairy science》2019,102(6):5191-5207
The objective of this study was to determine the effects of feeding synthetic zeolite A for 3 wk before expected calving on peripartal serum mineral concentrations, hypocalcemia, oxidant status, and performance. Holstein cows (n = 55) entering their second or greater lactations were assigned randomly to 1 of 2 dietary treatments starting 21 d before expected calving: control (CON: 40% corn silage, 33% wheat straw, and 27% concentrate; n = 29) or experimental [EXP: CON plus zeolite A (X-Zelit, Protekta Inc., Lucknow, ON, Canada/Vilofoss, Graasten, Denmark; n = 26) at an inclusion rate of 3.3% of dry matter, targeting 500 g/d as-fed]. Cows were fed the same postpartum diet and housed in individual tiestalls through 28 d in milk. Cows fed EXP had higher serum Ca concentrations as parturition approached and during the immediate postpartum period. Serum P concentrations were lower for the EXP-fed cows during the prepartum period and the first 2 d of lactation, whereas serum Mg concentrations were lower than those of the CON-fed cows only during the immediate periparturient period. Cows fed EXP had decreased prevalence of subclinical hypocalcemia (SCH) from d −1 through 3 relative to day of parturition, with the largest difference occurring within the first day postpartum. Prepartum dry matter intake tended to be decreased and rumination was decreased in cows fed EXP; however; postpartum dry matter intake, rumination, milk yield, milk component yield, and colostrum measurements did not differ between treatments. Cows fed EXP tended to have increased hazard of pregnancy by 150 d in milk when controlling for parity compared with CON-fed cows; potential reproductive benefits merit further study. This study demonstrated that zeolite A supplementation during the prepartum period results in markedly improved serum Ca concentrations around parturition and similar postpartum performance compared with controls and is effective at decreasing hypocalcemia in multiparous Holstein cows.  相似文献   

7.
Twelve multiparous Holstein cows (145 ± 9 d in milk) were randomly assigned to receive either 0 g/d of encapsulated niacin (control diet; C) or 12 g/d of encapsulated niacin (NI) and were exposed to thermoneutral (TN; 7 d) or heat stress (HS; 7 d) conditions in climate-controlled chambers. The temperature-humidity index during TN conditions never exceeded 72, whereas HS conditions consisted of a circadian temperature range in which the temperature-humidity index exceeded 72 for 12 h/d. Measures of thermal status obtained 4 times/d included respiration rate (RR); rectal temperature; surface temperature of both shaved and unshaved areas at the rump, shoulder, and tail head; vaginal temperature; and evaporative heat loss (EVHL) of the shoulder shaved and unshaved areas. Cows fed NI had increased free plasma niacin concentrations in both the TN and HS periods (1.70 vs. 1.47 ± 0.17 μg/mL). Milk yield did not differ between dietary groups or periods. Dry matter intake was not affected by NI, but decreased (3%) for both C and NI treatments during HS. Water intake was increased during HS in both treatments (C: 40.4 vs. 57.7 ± 0.8 L/d for TN and HS, respectively; NI: 52.7 vs. 57.7 ± 0.8 L/d for TN and HS, respectively). Average EVHL for shaved and unshaved skin for C and NI treatments was higher during HS (90.1 vs. 108.1 g/m2 per hour) than TN (20.7 vs. 15.7 ± 4.9 g/m2 per hour). Between 1000 and 1600 h, mean EVHL for shaved and unshaved areas for NI fed cows was higher than for C fed cows (106.9 vs. 94.4 ± 4.9 g/m2 per hour). The NI fed cows had decreased rectal temperatures during HS compared with the C fed cows (38.17 vs. 38.34 ± 0.07°C) and had lower vaginal temperatures (38.0 vs. 38.4 ± 0.02°C). Calculated metabolic rate decreased during HS regardless of diet (50.25 and 49.70 ± 0.48 kcal/kg of body weight per day for TN and HS, respectively). Feeding NI increased free plasma NI levels, increased EVHL during peak thermal load, and was associated with a small but detectable reduction in rectal and vaginal temperatures in lactating dairy cows experiencing a mild thermal load.  相似文献   

8.
Multiparous, lactating Holstein cows (n = 23; 120 ± 30 d in milk, 690 ± 67 kg of body weight) housed in climatic chambers were randomly assigned to 1 of 2 dietary treatments: a diet containing a novel yeast culture formulation (YC) for heat stress (n = 12, 10 g/d) or a control diet (n = 11). The trial length was 28 d and consisted of a 7-d thermal neutral period (TN; 18°C, 20% humidity) followed by 21 d of heat stress (HS; cyclical daily temperatures ranging from 29.4 to 37.8°C and 20% humidity). Cows were individually fed a total mixed ration consisting primarily of alfalfa hay and steam-flaked corn. During TN, the YC feeding had no effect on production variables or most body temperature indices. During HS, all body temperature indices increased and YC had no effect on rump surface temperature, respiration rate, or sweating rates. Cows fed YC had lower rectal temperatures at 1200 and 1800 h (40.29 vs. 40.02°C and 40.35 vs. 40.12 ± 0.07°C, respectively) compared with control-fed cows. Cows fed both diets lost body weight (42 kg) during HS, but there were no differences between diets. Control-fed cows had increased dry matter intake (DMI) and milk yield (19.1 vs. 17.9 ± 0.5 kg/d and 32.15 vs. 29.15 ± 0.02 kg/d, respectively) compared with YC-fed cows, but intake and milk production were similar between diets when evaluated on a body weight basis. Heat stress progressively decreased DMI (29%) and milk yield, with milk production reaching a nadir (33%) in the third week. Heat stress decreased milk protein (7%) and lactose (5%) levels, but did not alter milk fat content. Heat-stressed cows were in calculated negative energy balance (−1.91 ± 0.70 Mcal/d) and this was unaffected by diet. Independent of diet, HS decreased plasma glucose (11%), but neither diet nor HS altered basal nonesterified fatty acid levels. Heat stress increased plasma urea N concentrations (11.5 vs. 14.8 ± 0.4 mg/dL). Despite YC-fed cows having slightly reduced body temperatures indices, feeding YC did not prevent the negative effects of HS.  相似文献   

9.
The objective of this study was to evaluate the effects of the starch content of pre- and postpartum diets on productivity, plasma energy metabolites, and serum markers of inflammation of dairy cows during the calving transition period. Eighty-eight primiparous and multiparous cows were randomly assigned to pre- and postpartum dietary treatments balanced for parity and pretrial body condition score at d 28 ± 3 before expected calving date. Cows were fed either a control [Control; 14.0% starch, dry matter (DM) basis] or high-starch (High; 26.1% starch, DM basis) prepartum diet commencing 28 ± 3 d before expected calving date. Following calving, cows were fed either a high-fiber (HF; 33.8% neutral detergent fiber, 25.1% starch, DM basis) or high-starch (HS; 27.2% neutral detergent fiber, 32.8% starch, DM basis) postpartum diet for the first 20 ± 2 d following calving. Cows fed the High prepartum diet had greater DM intake (12.4 vs. 10.2 kg/d), plasma concentrations of insulin (1.72 vs. 14.2 ng/mL), glucose (68.1 vs. 65.0 mg/dL), and glucagon-like peptide-2 (0.41 vs. 0.32 ng/mL) before parturition, but increased plasma free fatty acid concentration (452 vs. 363 µEq/L) and milk fat yield (1.64 vs. 1.48 kg/d) after parturition. Cows fed the HS postpartum diet had lower plasma free fatty acid (372 vs. 442 µEq/L) and serum haptoglobin (0.46 vs. 0.70 mg/mL) concentrations over a 3-wk period after calving. In addition, there was a tendency for interaction between prepartum and postpartum diets for milk yield, where feeding the HS postpartum diet increased milk yield compared with the HF diet for cows fed the Control prepartum diet (40.8 vs. 37.9 kg/d) but not for cows fed the High prepartum diet. These results suggest that management efforts to minimize the change in diet fermentability during the calving transition by feeding the High prepartum diet, the HF postpartum diet, or both did not increase productivity of dairy cows but increased fat mobilization after calving. Our findings also suggest that feeding high-starch postpartum diets can decrease fat mobilization and serum indicators of systemic inflammation and increase milk production even with the transition from a low-starch prepartum diet.  相似文献   

10.
Nutritional management during the dry period may affect susceptibility of cows to metabolic and infectious diseases during the periparturient period. Thirty-five multiparous Holstein cows were used to determine the effect of prepartum intake, postpartum induction of ketosis, and periparturient disorders on metabolic status. Cows were fed a diet from dry-off to parturition at either ad libitum intake or restricted intake [RI; 80% of calculated net energy for lactation (NEL) requirement]. After parturition, all cows were fed a lactation diet. At 4 d in milk (DIM), cows underwent a physical examination and were classified as healthy or having at least one periparturient disorder (PD). Healthy cows were assigned to the control (n = 6) group or the ketosis induction (KI; n = 9) group. Cows with PD were assigned to the PD control (PDC; n = 17) group. Cows in the control and PDC groups were fed for ad libitum intake. Cows in the KI group were fed at 50% of their intake on 4 DIM from 5 to 14 DIM or until signs of clinical ketosis were observed; then, cows were returned to ad libitum intake. During the dry period, ad libitum cows ate more than RI cows; the difference in intake resulted in ad libitum cows that were in positive energy balance (142% of NEL requirement) and RI cows that were in negative energy balance (85% of NEL requirement). Prepartum intake resulted in changes in serum metabolites consistent with plane of nutrition and energy balance. Prepartum intake had no effect on postpartum intake, serum metabolites, or milk yield, but total lipid content of liver at 1 d postpartum was greater for ad libitum cows than for RI cows. The PD cows had lower intake and milk yield during the first 4 DIM than did healthy cows. During the ketosis induction period, KI cows had lower intake, milk yield, and serum glucose concentration but higher concentrations of nonesterified fatty acids and β-hydroxybutyrate in serum as well as total lipid and triacylglycerol in liver than did control cows. Cows with PD had only modest alterations in metabolic variables in blood and liver compared with healthy cows. The negative effects of PD and KI on metabolic status and milk yield were negligible by 42 DIM, although cows with PD had lower body condition score and BW. Prepartum intake did not affect postpartum metabolic status or milk yield. Periparturient disorders and induction of ketosis negatively affected metabolic status and milk yield during the first 14 DIM.  相似文献   

11.
In the current study, we used heat stress (HS) as an oxidative stress model to examine the effects of hydroxy-selenomethionine (HMSeBA), an organic selenium source, on selenium's bioavailability, antioxidant status, and performance when fed to dairy cows. Eight mid-lactation Holstein dairy cows (141 ± 27 d in milk, 35.3 ± 2.8 kg of milk/d, parity 2 or 3) were individually housed in environmental chambers and randomly assigned to 1 of 2 treatments: inorganic Se supplementation (sodium selenite; SS; 0.3 mg of Se/kg of dry matter; n = 4) or HMSeBA supplementation (0.3 mg of Se/kg of dry matter; n = 4). The trial was divided into 3 continuous periods: a covariate period (9 d), a thermal neutral (TN) period (28 d), and a HS period (9 d). During the covariate and TN periods, all cows were housed in TN conditions (20°C, 55% humidity). During HS, all cows were exposed to cyclical HS conditions (32–36°C, 40% humidity). All cows were fed SS during the covariate period, and dietary treatments were implemented during the TN and HS periods. During HS, cows fed HMSeBA had increased Se concentrations in serum and milk, and total Se milk-to-serum concentration ratio compared with SS controls. Superoxide dismutase activity did not differ between Se sources, but we noted a treatment by day interaction in glutathione peroxidase activity as HS progressively reduced it in SS controls, whereas it was maintained in HMSeBA cows. Supplementation with HMSeBA increased total antioxidant capacity and decreased malondialdehyde, hydrogen peroxide, and nitric oxide serum concentrations compared with SS-fed controls. We found no treatment effects on rectal temperature, respiratory rate, or dry matter intake. Supplementing HMSeBA tended to increase milk yield and decrease milk fat percentage. No other milk composition parameters differed between treatments. We observed no treatment effects detected on blood biochemistry, except for a lower alanine aminotransferase activity in HMSeBA-fed cows. These results demonstrate that HMSeBA supplementation decreases some parameters of HS-induced oxidative stress.  相似文献   

12.
Betaine is a natural compound found in sugar beets that serves as a methyl donor and organic osmolyte when fed to animals. The objective was to evaluate the effect of feeding betaine-containing molasses on performance of transition dairy cows during late summer in 2 trials. In early September, cows were randomly assigned to betaine (BET) or control (CON) groups either shortly after dry off (trial 1; n = 10 per treatment) or 24 d before calving (trial 2; n = 8 per treatment) based on parity and previous mature equivalent milk yield. Cows were fed common diets supplemented either with a liquid supplement made of molasses from sugar cane and condensed beet solubles containing betaine [BET, 89.1 g/kg of dry matter (DM)] or a sugar cane molasses-based liquid supplement without betaine (CON) until 8 wk postpartum. The liquid supplements had similar nutrient contents and were fed at a rate of 1.1 and 1.4 kg DM/d for pre- and postpartum cows, respectively. Starting at their entry in the studies, cows were housed in the same freestall barn without a cooling system. After calving, all cows were housed in the same barn cooled by misters and fans and milked thrice daily. Intake was recorded daily and body weight and body condition score were assessed every 2 wk. Milk yield was recorded at each milking and composition was analyzed weekly. Blood samples were collected weekly from a subset of cows to assess concentrations of metabolites and AA. No treatment effects were apparent for DM intake and body weight in the prepartum and postpartum periods. For cows enrolled at dry off, BET supported higher milk yield (45.1 vs. 41.9 kg/d) and fat content (4.78 vs. 4.34%) and elevated plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate in early lactation compared to CON. However, no differences were observed for milk yield, most milk component contents and yields, and blood metabolites between treatments for cows enrolled during the close-up period. Compared to cows in the CON group, BET cows enrolled during the far-off period tended to have lower plasma concentrations of Met, Thr, and Trp during the pre- and postpartum periods. They also had lower plasma concentrations of Lys and Phe before calving but higher plasma Gly concentration after parturition. In conclusion, feeding a betaine-containing liquid supplement from far-off through early lactation improves lactation performance but increases adipose tissue mobilization and production of ketone bodies in early lactation.  相似文献   

13.
Associations were examined between components and indicators of early lactation energy balance (EB) and measures of fertility in Holstein cows. Milk production, dry matter intake (DMI), body condition score (BCS), and endocrine and metabolite data from 96 cows were analyzed using multivariate logistic regression and survival analysis. Fertility variables investigated were interval to commencement of luteal activity (C-LA), calving to conception interval (CCI), and conception rate to first service (CON1). Mean daily EB, milk protein content, and DMI during the first 28 d in milk were associated positively with CON1. Cows having poorer BCS (≤2.25) at first service had a lower CON1. Positive associations were identified among EB, milk protein content, DMI, and the likelihood of a shorter interval to C-LA. Cows having greater DMI and a more positive EB had an increased likelihood of a shorter CCI, whereas a lower nadir BCS was associated with an increased likelihood of a longer CCI. Milk yield was not associated with any of the fertility variables investigated. A greater plasma concentration of insulin-like growth factor I (IGF-I) during the first 2 wk of lactation was associated with a greater CON1 and an increased likelihood of a shorter interval to C-LA. In conclusion, we identified DMI as the principal component of EB influencing subsequent fertility. Furthermore, results indicate that milk protein content and plasma IGF-I concentration in early lactation may be useful indicators of reproductive efficiency.  相似文献   

14.
《Journal of dairy science》2023,106(8):5416-5432
The objective of this study was to determine the effect of dietary supplementation of n-3 polyunsaturated fatty acids (PUFA) and n-6 PUFA on dry matter intake (DMI), energy balance, oxidative stress, and performance of transition cows. Forty-five multiparous Holstein dairy cows with similar parity, body weight (BW), body condition score (BCS), and milk yield were used in a completely randomized design during a 56-d experimental period including 28 d prepartum and 28 d postpartum. At 240 d of pregnancy, cows were randomly assigned to one of the 3 isoenergetic and isoprotein dietary treatments, including a control ration containing 1% hydrogenated fatty acid (CON), a ration with 8% extruded soybean (HN6, high n-6 PUFA source), and a ration with 3.5% extruded flaxseed (HN3; high n-3 PUFA source). The HN6 and HN3 diets had an n-6/n-3 ratio of 3.05:1 and 0.64:1 in prepartum cows and 8.16:1 and 1.59:1 in postpartum cows, respectively. During the prepartum period (3, 2, and 1 wk before calving), DMI, DMI per unit of BW, total net energy intake, and net energy balance were higher in the HN3 than in the CON and NH6 groups. During the postpartum period (2, 3, and 4 wk after calving), cows fed HN3 and HN6 diets both showed increasing DMI, DMI as a percentage of BW, and total net energy intake compared with those fed the CON diet. The BW of calves in the HN3 group was 12.91% higher than those in the CON group. Yield and nutrient composition of colostrum (first milking after calving) were not affected by HN6 or HN3 but milk yield from 1 to 4 wk of milking was significantly improved compared with CON. During the transition period, BW, BCS, and BCS changes were not affected. Cows fed the HN6 diet had a higher plasma NEFA concentration compared with the CON cows during the prepartum period. Feeding HN3 reduced the proportion of de novo fatty acids and increased the proportion of preformed long-chain fatty acids in regular milk. In addition, the n-3 PUFA-enriched diet reduced the n-6/n-3 PUFA ratio in milk. In conclusion, increasing the n-3 fatty acids concentration in the diet increased both DMI during the transition period and milk production after calving, and supplementing n-3 fatty acids was more effective in mitigating the net energy balance after calving.  相似文献   

15.
Heat stress (HS) decreases milk protein synthesis beyond what would be expected based on the concomitant reduction in feed intake. The aim of the present study was to evaluate the direct effects of HS on milk protein production. Four multiparous, lactating Holstein cows (101 ± 10 d in milk, 574 ± 36 kg of body weight, 38 ± 2 kg of milk/d) were individually housed in environmental chambers and randomly allocated to 1 of 2 groups in a crossover design. The study was divided into 2 periods with 2 identical experimental phases (control phase and trial phase) within each period. During phase 1 or control phase (9 d), all cows were housed in thermal neutral conditions (TN; 20°C, 55% humidity) and fed ad libitum. During phase 2 or treatment phase (9 d), group 1 was exposed to cyclical HS conditions (32 to 36°C, 40% humidity) and fed ad libitum, whereas group 2 remained in TN conditions but was pair-fed (PFTN) to their HS counterparts to eliminate the confounding effects of dissimilar feed intake. After a 30-d washout period in TN conditions, the study was repeated (period 2), inverting the environmental treatments of the groups relative to period 1: group 2 was exposed to HS and group 1 to PFTN conditions. Compared with PFTN conditions, HS decreased milk yield (17.0%), milk protein (4.1%), milk protein yield (19%), 4% fat-corrected milk (23%), and fat yield (19%). Apparent digestibility of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, crude protein, and ether extract was increased (11.1–42.9%) in HS cows, as well as rumen liquor ammonia (before feeding 33.2%; after feeding 29.5%) and volatile fatty acid concentration (45.3%) before feeding. In addition, ruminal pH was reduced (9.5 and 6% before and after feeding, respectively) during HS. Heat stress decreased plasma free amino acids (AA; 17.1%) and tended to increase and increased blood, urine, and milk urea nitrogen (17.2, 243, and 24.5%, respectively). Further, HS cows had reduced plasma glucose (8%) and nonesterified fatty acid (39.8%) concentrations compared with PFTN controls. These data suggest that HS increases systemic AA utilization (e.g., decreased plasma AA and increased nitrogen excretion), a scenario that limits the AA supply to the mammary gland for milk protein synthesis. Furthermore, the increase in AA requirements during HS might represent the increased need for gluconeogenic precursors, as HS is thought to prioritize glucose utilization as a fuel at the expense of nonesterified fatty acids.  相似文献   

16.
This experiment was conducted to compare conventional (CON; 21 d) and shortened (SH; 10 d) close-up period, and evaluate the effect of shortened close-up period combined with feeding different metabolizable protein (MP) levels on dry matter (DM) intake, metabolic status, and performance of dairy cows. Forty-eight multiparous Holstein cows with similar parity, body weight (BW), and previous lactation milk yield were divided into 2 groups. The first group (n = 24) received the far-off diet from ?60 to ?21 d (CON), and the second group (n = 24) received same far-off diet from ?60 to ?10 d (SH) relative to expected parturition. Cows were then moved to individual stalls and randomly allocated to 1 of 3 close-up diets: low MP diet (LMP; MP = 79 g/kg of DM), medium MP diet (MMP; MP = 101 g/kg of DM), or high MP diet (HMP; MP = 118 g/kg of DM). Treatments were used in a 2 × 3 factorial arrangement with 2 lengths of close-up period (CON and SH) and 3 levels of MP (LMP, MMP, and HMP). All diets were fed for ad libitum intake during the close-up period. After calving, all cows received the same fresh cow diet. We found no interaction between close-up period length and MP levels for traits, except for postpartum serum fatty acids and β-hydroxybutyrate (BHB). The concentrations of postpartum serum fatty acids and BHB were higher on LMP than MMP and HMP diets in SH group. The cows of the SH group tended to produce less colostrum in the first milking than cows in CON group. The length of close-up period did not affect pre- and postpartum DM intake or energy balance of cows during the last week of prepartum, but cows of the CON group had greater BW changes during the last 3 wk before parturition than cows in SH group. Cows fed MMP and HMP diets consumed 1.2 and 1 kg more DM than for those fed LMP prepartum, respectively. The concentrations of prepartum BHB and Ca were higher for SH cows than CON group cows. Except for blood urea N concentration, no other blood metabolite in prepartum was affected by dietary MP. We found no effects of close-up period length or MP levels in the close-up diet on urinary pH, purine derivative excretion, and microbial N flow. Postpartum, milk yield was not affected by close-up period length, but cows in CON group tended to have higher 4% fat-corrected milk yield, had higher milk fat content and yield, had greater BW and body condition score loss, and higher energy negative balance than cows in the SH group. Cows fed MMP diet ate 1.8 kg more DM and yielded 3.37 kg more milk than those fed the LMP diet. Milk fat, protein, and lactose content, milk urea N, and somatic cell count were not affected by MP levels, but the yield of milk protein and lactose were higher on MMP diet than on LMP diet. Concentrations of postpartum serum fatty acids and BHB were decreased by shortening the close-up period length, but glucose, cholesterol, and triglyceride were similar between close-up groups. During the postpartum period, serum fatty acids, BHB, aminotransferase, and Ca concentrations were decreased by increasing the MP levels in the close-up diet. It appears from this data set that multiparous cows will benefit from a shortened close-up period, and feeding a moderate MP diet could improve DM intake, milk yield, and metabolic status of periparturient dairy cows.  相似文献   

17.
《Journal of dairy science》2022,105(7):5714-5722
Dry malt extract (DME) has been used in animal nutrition as an alternative source of rapidly fermentable carbohydrate. An experiment was conducted to evaluate the partial replacement of ground corn with DME in diets of dairy cows on apparent digestibility, ruminal fermentation, predicted rumen microbial protein supply, N excretion, serum urea-N concentration, and milk yield and composition. Twenty-eight Holstein cows (35.3 ± 5.88 kg/d milk yield and 148 ± 78 d in milk), 4 of which were rumen cannulated, were blocked according to the presence of rumen cannulas, parity, milk yield, and days in milk and enrolled into a crossover design experiment. Experimental periods lasted 21 d, of which the first 14 d were allowed for treatment adaptation and 7 d were used for data collection and sampling. Treatment sequences were composed of control (CON) or DME from barley (Liotécnica Tecnologia em Alimentos) replacing ground corn at 7.62% diet dry matter (~2 kg/d). Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc.) modeling the fixed effects of treatment, period, and their interaction, in addition to the random effect of animal. Ruminal fermentation data were analyzed as repeated measures including time and its interaction with treatment in the previous model as fixed effects. Treatments did not affect nutrient intake or feed sorting. Dry malt extract increased apparent digestibility of CP. Feeding DME decreased ruminal pH and molar percentage of butyrate and increased molar percentage of acetate. No treatment effects were detected for predicted rumen microbial protein supply or N excretion. Cows fed DME had lower serum urea-N concentration than CON cows. Dry malt extract increased yields of actual milk, 3.5% fat-corrected milk, fat, and protein, and improved feed efficiency (fat-corrected milk ÷ dry matter intake). Cows fed DME had lower milk urea nitrogen content in comparison with CON cows. Dry malt extract can partially replace ground corn in the diet while improving milk yield and feed efficiency.  相似文献   

18.
《Journal of dairy science》2023,106(1):233-244
Lactation diets dependent on rumen undegradable protein (RUP) sources derived from soybean meal (SBM) products are generally high in Lys and poor in Met. We conducted an experiment to evaluate the effects of increasing dietary RUP and altering digestible AA supply by inclusion of heat-treated soybean meal (HTSBM) or high-protein corn dried distillers grains with soluble (DDGS) on performance in mid-lactation dairy cows. Twenty-four Holstein cows (200 ± 40 d in milk and 30.0 ± 3.92 kg/d of milk yield) blocked according to parity, milk yield, and days in milk were used in a 3 × 3 Latin square design experiment with 21-d periods. Treatments were (1) control (CON), a diet with 6.0% RUP containing 15.9% SBM as the main protein source; (2) HTSBM, a diet with 6.7% RUP containing 4.4% HTSBM partially replacing SBM; and (3) high-protein DDGS (FP; FlexyPro, SJC Bioenergia), a diet with 6.9% RUP containing 5.34% FP partially replacing SBM and ground corn. Diets had similar crude protein (16.9%) and net energy of lactation. Data were submitted to ANOVA using the mixed procedure of SAS software (SAS Institute Inc.). Treatment differences were evaluated using orthogonal contrasts: (1) increasing RUP (SBM vs. HTSBM + FP) and (2) altering digestible AA supply (HTSBM vs. FP). Cows fed HTSBM and FP had greater intake (values in parentheses represent treatment means of CON, HTSBM, and FP, respectively) of neutral detergent fiber (7.14, 7.35, and 7.69 kg/d), crude protein (4.27, 4.37, and 4.51 kg/d), and ether extract (0.942, 0.968, and 1.04 kg/d) compared with cows fed CON. Feeding FP resulted in greater intake of neutral detergent fiber and ether extract compared with HTSBM. Cows fed HTSBM and FP had lower sorting index for feed particles <4 mm than cows fed CON (1.029, 1.008, and 1.022). Feeding FP resulted in greater intake of feed particles <4 mm compared with HTSBM. Treatments containing HTSBM or FP tended to decrease organic matter digestibility (72.4, 71.2, and 71.1%), but no other effects were detected in digestibility of neutral detergent fiber, crude protein, or ether extract. No evidence for differences among treatments was detected in excretion of purine derivatives in milk and urine. Milk yield was greater in cows fed HTSBM or FP than in cows fed CON (28.0, 28.9, and 28.8 kg/d, respectively). Cows fed HTSBM or FP tended to have greater energy-corrected milk and protein yield compared with those fed CON. Milk protein concentration was greater in DDGS cows than those in the HTSBM group (3.45 and 3.40%, respectively). No differences were detected in milk fat yield and concentration, milk urea nitrogen, feed efficiency, or serum concentrations of urea and glucose. Overall, increasing dietary RUP by feeding HTSBM or FP improved intake of nutrients and milk yield without affecting feed efficiency. Altering digestible AA supply while maintaining similar dietary RUP had negligible effects on performance of cows.  相似文献   

19.
《Journal of dairy science》2022,105(10):8439-8453
Hyperinsulinemia concurrent with hypoglycemia is one of a myriad of physiological changes typically experienced by lactating dairy cows exposed to heat stress, the consequences of which are not yet well defined or understood. Therefore, the objective of this experiment was to separate the production-related effects of hyperinsulinemia with hypoglycemia from those of a hyperthermic environment. Multiparous lactating Holstein cows (n = 23; 58 ± 4 d in milk, 3.1 ± 0.3 lactations) were housed in temperature-controlled rooms and all were subjected to 4 experimental periods as follows: (1) thermoneutral (TN; temperature-humidity index of 65.1 ± 0.2; d 1–5), (2) TN + hyperinsulinemic-hypoglycemic clamp (HHC; insulin infused at 0.3 µg/kg of BW per h, glucose infused to maintain 90 ± 10% of baseline blood glucose for 96 h; d 6–10), (3) heat stress (HS; temperature-humidity index of 72.5 ± 0.2; d 16–20), and (4) HS + euglycemic clamp (EC; glucose infused to reach 100 ± 10% of TN baseline blood glucose for 96 h; d 21–25). Cows were fed and milked twice daily. Feed refusals were collected once daily for calculation of daily dry matter intake, and milk samples were collected at the beginning and end of each period for component analyses. Circulating insulin concentrations were measured in daily blood samples, whereas glucose concentrations were measured more frequently and variably in association with clamp procedures. Rectal temperatures and respiration rates were greater during HS than TN, as expected, and states of hyperinsulinemia and hypoglycemia were successfully induced by the HHC and high ambient temperatures (HS and EC). Feed intake differed based upon thermal environment as it was similar during TN and HHC periods, and declined for HS and EC. Milk production was not entirely reflective of feed intake as it was greatest during TN, intermediate during HHC, and lowest during HS and EC. All milk components differed with the experimental period, primarily in response to the thermal environment. Interestingly, TN baseline glucose concentrations were highly correlated with the change in glucose from TN to HS, and were related to glycemic status during HS. Furthermore, although few in number, those cows that failed to become hypoglycemic during HS tended to have a greater reduction in milk yield. The work presented here addresses a critical knowledge gap by broadening our understanding of the physiological response to heat stress and the related changes in glycemic state. This broadened understanding is fundamental for the development of novel, innovative management strategies as the dairy industry is compelled to become increasingly efficient in spite of global warming.  相似文献   

20.
The experimental objective was to determine the effect of dietary supplementation with live-cell yeast (LCY; Procreatin-7, Lesaffre Feed Additives, Milwaukee, WI) at 2 dosages in high-starch (HS) diets [30% starch in dry matter (DM)] on lactation performance, ruminal fermentation, and total-tract nutrient digestibility in dairy cows compared with HS or low-starch (LS; 20% starch in DM) non-LCY diets. Sixty-four multiparous Holstein cows (114 ± 37 d in milk and 726 ± 74 kg of body weight at trial initiation) were randomly assigned to 32 electronic gate feeders (2 cows per feeder), which were randomly assigned to 1 of 4 treatments in a completely randomized design. A 2-wk covariate adjustment period with cows fed a 50:50 mixture of the HS and LS diets was followed by a 12-wk treatment period with cows fed their assigned treatment diets. The HS diets were fed without (HS0) and with 2 (HS2) or 4 (HS4) g/cow per day of LCY. The LS diet did not contain LCY (LS0) and was formulated by partially replacing dry ground shelled corn with soy hulls. Cows fed LS0 consumed more DM than cows fed HS diets during wk 3, 10, 11, and 12. Yields of actual (44.5 kg/d, on average), fat-, energy-, and solids-corrected milk were unaffected by treatment. Milk fat content tended to be greater for LS0 than for HS0 and HS2 but not different from HS4. Milk urea nitrogen contents were greater for cows fed LS0 than for cows fed the HS diets. Feed conversion (kg of milk/kg of DM intake) was numerically greater for HS diets than for LS0. Ruminal pH was unaffected by treatment. Ruminal molar proportion of acetate was greater, whereas that of propionate was lower, for LS0 compared with HS diets. Dry matter and organic matter digestibilities were greater for HS2 and HS4 than for HS0. Digestibility of neutral detergent fiber was greater for HS4 than for HS0 and HS2. Dry matter, organic matter, and neutral detergent fiber digestibilities were greater for LS0 than for HS diets; starch digestibility was greater for LS0 than for HS0 and HS4. Feeding LS0 increased DM intake and milk fat content, but reduced feed conversions. The addition of 4 g/cow per day of LCY to HS diets tended to increase milk fat content and increased total-tract fiber digestibility in dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号