首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of dairy science》2019,102(12):11067-11080
Improving feed efficiency (FE) of dairy cattle may boost farm profitability and reduce the environmental footprint of the dairy industry. Residual feed intake (RFI), a candidate FE trait in dairy cattle, can be defined to be genetically uncorrelated with major energy sink traits (e.g., milk production, body weight) by including genomic predicted transmitting ability of such traits in genetic analyses for RFI. We examined the genetic basis of RFI through genome-wide association (GWA) analyses and post-GWA enrichment analyses and identified candidate genes and biological pathways associated with RFI in dairy cattle. Data were collected from 4,823 lactations of 3,947 Holstein cows in 9 research herds in the United States. Of these cows, 3,555 were genotyped and were imputed to a high-density list of 312,614 SNP. We used a single-step GWA method to combine information from genotyped and nongenotyped animals with phenotypes as well as their ancestors' information. The estimated genomic breeding values from a single-step genomic BLUP were back-solved to obtain the individual SNP effects for RFI. The proportion of genetic variance explained by each 5-SNP sliding window was also calculated for RFI. Our GWA analyses suggested that RFI is a highly polygenic trait regulated by many genes with small effects. The closest genes to the top SNP and sliding windows were associated with dry matter intake (DMI), RFI, energy homeostasis and energy balance regulation, digestion and metabolism of carbohydrates and proteins, immune regulation, leptin signaling, mitochondrial ATP activities, rumen development, skeletal muscle development, and spermatogenesis. The region of 40.7 to 41.5 Mb on BTA25 (UMD3.1 reference genome) was the top associated region for RFI. The closest genes to this region, CARD11 and EIF3B, were previously shown to be related to RFI of dairy cattle and FE of broilers, respectively. Another candidate region, 57.7 to 58.2 Mb on BTA18, which is associated with DMI and leptin signaling, was also associated with RFI in this study. Post-GWA enrichment analyses used a sum-based marker-set test based on 4 public annotation databases: Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Reactome pathways, and medical subject heading (MeSH) terms. Results of these analyses were consistent with those from the top GWA signals. Across the 4 databases, GWA signals for RFI were highly enriched in the biosynthesis and metabolism of amino acids and proteins, digestion and metabolism of carbohydrates, skeletal development, mitochondrial electron transport, immunity, rumen bacteria activities, and sperm motility. Our findings offer novel insight into the genetic basis of RFI and identify candidate regions and biological pathways associated with RFI in dairy cattle.  相似文献   

2.
《Journal of dairy science》2019,102(7):6131-6143
Residual feed intake (RFI) is an estimate of animal feed efficiency, calculated as the difference between observed and expected feed intake. Expected intake typically is derived from a multiple regression model of dry matter intake on energy sinks, including maintenance and growth in growing animals, or maintenance, gain in body reserves, and milk production in lactating animals. The best period during the production cycle of a dairy cow to estimate RFI is not clear. Here, we characterized RFI in growing Holstein heifers (RFIGrowth; ∼10 to 14 mo of age; n = 226) and cows throughout a 305-d lactation (RFILac-Full; n = 118). The goals were to characterize relationships between RFI estimated at different production stages of the dairy cow; determine effects of selection for efficiency during growth on subsequent lactation and feed efficiency; and identify the most desirable testing scheme for RFILac-Full. For RFIGrowth, intake was predicted from multiple linear regression of metabolizable energy (ME) intake on mid-test body weight (BW)0.75 and average daily gain (ADG). For RFILac-Full, predicted intake was based on regression of BW0.75, ADG, and energy-corrected milk yield. Mean energy intake of the least and most efficient growing heifers (±0.5 standard deviations from mean RFIGrowth of 0) differed by 3.01 Mcal of ME/d, but the groups showed no difference in mid-test BW or ADG. Phenotypic correlation between RFIGrowth and RFI of heifers estimated in the first 100 d in milk (RFILac100DIM; n = 130) was 0.37. Ranking of these heifers as least (mean + 0.5 standard deviations), middle, or most efficient (mean – 0.5 standard deviations) based on RFIGrowth resulted in 43% maintaining the same ranking by RFILac100DIM. On average, the most efficient heifers ate 3.27 Mcal of ME/d less during the first 100 DIM than the least efficient heifers, but exhibited no differences in average energy-corrected milk yield, ADG, or BW. The correlation between RFILac100DIM and RFILac-Full was 0.72. Thus, RFIGrowth may serve as an indicator trait for RFI during lactation, and selection for heifers exhibiting low RFIGrowth should improve overall herd feed efficiency during lactation. Correlation analysis between RFILac-Full (10 to 305 DIM) and subperiod estimates of RFI during lactation indicated a test period of 64 to 70 d in duration occurring between 150 to 220 DIM provided a reliable approximation (r ≥ 0.90) of RFILac-Full among the test periods evaluated.  相似文献   

3.
Improving feed efficiency of dairy cows through breeding is expected to reduce enteric methane production per unit of milk produced. This study examined the effect of 2 forage-to-concentrate ratios on methane production, rumen fermentation, and nutrient digestibility in Holstein and Jersey dairy cows divergent in residual feed intake (RFI). Before experimental onset, RFI was estimated using a random regression model on phenotypic herd data. Ten lactating Holstein and 10 lactating Jersey cows were extracted from the herd and allocated to a high or low pre-experimental RFI group of 5 animals each within breed. Cows were fed ad libitum with total mixed rations either low (LC) or high (HC) in concentrates during 3 periods in a crossover design with a back-cross and staggered approach. Forage-to-concentrate ratio was 68:32 for LC and 39:61 for HC. Cows adapted to the diets in 12 to 24 d and feces were subsequently collected on 2 d. Afterward, gas exchange was measured in respiration chambers and rumen liquid was collected once after cows exited the chambers. Pre-experimental RFI was included in the statistical analysis as a class (low and high RFI) or continuous variable. Methane per kilogram of dry matter intake (DMI) was lower for Holsteins than Jerseys and the response to increased concentrate level was more pronounced for Holsteins than Jerseys (27.2 vs.13.8%); a similar pattern was found for the acetate:propionate ratio. However, methane production per kilogram of energy-corrected milk (ECM) was unaffected by breed. Further, total-tract digestibility of neutral detergent fiber was higher for Jerseys than Holsteins. For RFI as a class variable, DMI, methane production regardless of the expression, and digestibility were unaffected by RFI. For RFI as a continuous variable, DMI was lower and methane per kilogram of DMI was higher for cows with negative (efficient) than positive (inefficient) RFI values, and neutral detergent fiber digestibility was higher for Holsteins with negative than positive RFI values, but not for Jerseys. Daily methane production and methane per kilogram of ECM were unaffected by RFI. In conclusion, methane per kilogram of DMI of Jerseys was lowered to a smaller extent in response to the HC diet than of Holsteins. When pre-experimental RFI was used as a continuous variable, higher methane per kilogram of DMI was found for cows with negative RFI than positive RFI values, but not for methane per kilogram of ECM. These findings call for validation in larger studies.  相似文献   

4.
Dairy cow efficiency is increasingly important for future breeding decisions. The efficiency is determined mostly by dry matter intake (DMI). Reducing DMI seems to increase efficiency if milk yield remains the same, but resulting negative energy balance (EB) may cause health problems, especially in early lactation. Objectives of this study were to examine relationships between DMI and liability to diseases. Therefore, cow effects for DMI and EB were correlated with cow effects for 4 disease categories throughout lactation. Disease categories were mastitis, claw and leg diseases, metabolic diseases, and all diseases. In addition, this study presents relative percentages of diseased cows per days in milk (DIM), repeatability, and cow effect correlations for disease categories across DIM. A total of 1,370 German Holstein (GH) and 287 Fleckvieh (FV) primiparous and multiparous dairy cows from 12 dairy research farms in Germany were observed over a period of 2 yr. Farm staff and veterinarians recorded health data. We modeled health and production data with threshold random regression models and linear random regression models. From DIM 2 to 305 average daily DMI was 22.1 kg/d in GH and 20.2 kg/d in FV. Average weekly EB was 2.8 MJ of NEL/d in GH and 0.6 MJ of NEL/d in FV. Most diseases occurred in the first 20 DIM. Multiparous cows were more susceptible to diseases than primiparous cows. Relative percentages of diseased cows were highest for claw and leg diseases, followed by metabolic diseases and mastitis. Repeatability of disease categories and production traits was moderate to high. Cow effect correlations for disease categories were higher for adjacent lactation stages than for more distant lactation stages. Pearson correlation coefficients between cow effects for DMI, as well as EB, and disease categories were estimated from DIM 2 to 305. Almost all correlations were negative in GH, especially in early lactation. In FV, the course of correlations was similar to GH, but correlations were mostly more negative in early lactation. For the first 20 DIM, correlations ranged from ?0.31 to 0.00 in GH and from ?0.42 to ?0.01 in FV. The results illustrate that future breeding for dairy cow efficiency should focus on DMI and EB in early lactation to avoid health problems.  相似文献   

5.
Objectives were to evaluate the associations between residual dry matter (DM) intake (RFI) and residual N intake (RNI) in early lactation, from 1 to 5 wk postpartum, and in mid lactation, from 9 to 15 wk postpartum, and assess production performance and risk of diseases in cows according to RFI in mid lactation. Data from 4 experiments including 399 Holsteins cows were used in this study. Intakes of DM and N, yields of milk components, body weight, and body condition were evaluated daily or weekly for the first 105 d postpartum. Milk yield by 305 d postpartum was also measured. Incidence of disease was evaluated for the first 90 d postpartum and survival up to 300 d postpartum. Residual DM and N intake were calculated in early and mid lactation as the observed minus the predicted values, which were based on linear models that accounted for major energy or N sinks, including daily milk energy or N output, metabolic body weight, and daily body energy or N changes, and adjusting for parity, season of calving, and treatment within experiment. Cows were ranked by RFI and RNI in mid lactation and categorized into quartiles (Q1 = smallest RFI, to Q4 = largest RFI). Increasing efficiency in mid lactation resulted in linear decreases in RFI (depicted from Q1 to Q4; ?0.93, ?0.05, ?0.04, and 0.98 kg/d), DMI (16.0, 16.9, 17.3, and 18.4 kg/d), net energy for lactation (NEL) intake (26.8, 28.4, 29.0, and 30.8 Mcal/d), and NEL balance (?9.0, ?8.1, ?8.2, and ?5.5 Mcal/d) during early lactation, but no differences were observed in body NEL or N changes or yield of energy-corrected milk in the first 5 wk of lactation. Residual DM intake in mid lactation was associated with RFI (Pearson r = 0.43, and Spearman ρ = 0.32) and RNI (r = 0.44, ρ = 0.36) in early lactation, and with RNI in mid lactation (r = 0.91, ρ = 0.84). Similarly, RNI in mid lactation was associated with RNI in early lactation (r = 0.42, ρ = 0.35). During the first 15 wk postpartum, more efficient cows in mid lactation consumed 3.5 kg/d less DM (Q1 = 19.3 vs. Q4 = 22.8 kg/d) and were more N efficient (Q1 = 31.6 vs. Q4 = 25.8%), at the same time that yields of milk (Q1 = 39.0 vs. Q4 = 39.4 kg/d), energy-corrected milk (Q1 = 38.6 vs. Q4 = 39.3 kg/d), and milk components did not differ compared with the quartile of least efficient cows. Furthermore, RFI in mid lactation was not associated with 305-d milk yield, incidence of diseases in the first 90 d postpartum, or survival by 300 d postpartum. Collectively, rankings of RFI and RNI are associated and repeatable across lactation stages. The most feed-efficient cows were also more N efficient in early and mid lactation. Phenotypic selection of RFI based on measurements in mid lactation is associated with improved efficiency without affecting production or health in dairy cows.  相似文献   

6.
This experiment was conducted to investigate the effects of phytonutrients, compared with monensin as a positive control, on productivity, milk fatty acids, fat mobilization, and blood cells in lactating dairy cows. Thirty-six Holstein cows were used in a 9-wk randomized complete block design study. Following a 2-wk covariate period, cows were blocked by days in milk, parity, and milk yield and randomly assigned to 1 of 3 treatments (12 cows/treatment): 450 mg/cow per day of monensin (MO), 250 mg/cow per day of capsicum plus 450 mg/cow per day of MO (MOCAP), and 1,000 mg/cow per day of a mixture of cinnamaldehyde, eugenol, and capsicum (CEC). Dry matter intake and milk yield were not affected by treatment. Supplementation of CEC increased feed efficiency compared with MO, but did not affect feed efficiency on an energy-corrected milk basis. Milk composition (fat, protein, and lactose), milk fatty acid profile, and blood concentrations of nonesterified fatty acids and β-hydroxybutyrate were also not affected by treatment. The expression of hormone-sensitive lipase in adipose tissues tended to increase for MOCAP compared with MO. Counts of total white blood cell, neutrophils, lymphocytes, eosinophils, and basophils were not affected by treatment, although monocytes count tended to be decreased by CEC. Treatments had no effect on red blood cells, hemoglobin, and platelets. Results indicate that dietary supplementation of CEC and capsicum had no production or other effects in dairy cows, compared with MO, except CEC increased feed efficiency and tended to decrease blood monocytes count.  相似文献   

7.
Apparent digestibility and retention of Mn by dairy cows was used to compare 2 sources of Mn and to estimate Mn requirements. In experiment 1, Holstein cows at dry-off (60 d prepartum) were fed a basal diet with no supplemental Mn (43 mg of Mn/kg of dry matter) and received a daily bolus of 0 or 200 mg/d supplemental Mn from MnSO4 or from Mn-Met (6 cows per treatment) until parturition. Approximately 30 d before parturition, cows were moved to metabolism stalls for total collection of feces and urine. No differences were observed between Mn sources, but apparent absorption of Mn (6.4 vs. 2.3%) tended to be greater, and apparent retention of Mn (44 vs. 12 mg/d) was greater, for cows given supplemental Mn compared with control cows. In the second experiment, apparent Mn digestibility data from 8 experiments conducted with lactating dairy cows (39 dietary treatments and 160 observations) were combined with data from experiment 1. The regression equation of intake of digestible Mn on Mn intake (i.e., Lucas test) was as follows: intake of digestible Mn (mg/d) = −151 + 0.26 × Mn intake (mg/d). Based on that equation, Mn intake had to equal 580 mg/d to meet the metabolic fecal Mn requirement. The corresponding dietary concentration, assuming dry matter intakes of 21 and 12 kg/d for lactating and dry cows, respectively, were 28 and 49 mg/kg dry matter. These concentrations are approximately 1.6 and 2.7 times higher than those needed to meet the Mn requirements for lactating and dry cows, respectively, as calculated using the 2001 National Research Council dairy requirements model.  相似文献   

8.
The objective of this study was to determine effects of monensin on ovarian follicular development and reproductive performance in postpartum dairy cows. Forty-eight multiparous Holstein cows were randomly assigned to receive either a control total mixed ration (n = 24) or the same diet plus 22 mg of monensin/kg (n = 24) from 21 d before anticipated calving until cows were either confirmed pregnant or were >180 d postpartum. Monensin had no effect on development of the first dominant follicle postpartum or the numbers of class 1 (3 to 5 mm), 2 (6 to 9 mm), or 3 (10 to 15 mm) follicles. Control cows had more class 4 (>15 mm) follicles at 10 to 13 d postpartum than cows in the monensin group. The first dominant follicle postpartum ovulated, regressed, or became cystic unrelated to differences between diets. However, the first ovulation postpartum occurred earlier in monensin-fed cows than in the control group (27.2 +/- 2.1 d vs. 32.4 +/- 1.5 d), with no dietary effects on the diameter of the ovulating follicle. Similarly, treatments did not differ in the proportion of cows with 2 or 3 waves of ovarian follicular development per cycle, nor in the number of follicles of all classes during the breeding period. Times of ovulation following treatment with prostaglandin F2alpha were not different between dietary groups. Pregnancy rates after timed artificial insemination were similar between diets. Supplementation with monensin resulted in a shorter postpartum interval to first ovulation but did not affect other reproductive measures in healthy, lactating dairy cows.  相似文献   

9.
We determined if differences in digestibility among cows explained variation in residual feed intake (RFI) in 4 crossover design experiments. Lactating Holstein cows (n = 109; 120 ± 30 d in milk; mean ± SD) were fed diets high (HS) or low (LS) in starch. The HS diets were 30% (±1.8%) starch and 27% (±1.2%) neutral detergent fiber (NDF); LS diets were 14% (±2.2%) starch and 40% (±5.3%) NDF. Each experiment consisted of two 28-d treatment periods, with apparent total-tract digestibility measured using indigestible NDF as an internal marker during the last 5 d of each period. Individual cow dry matter (DM) intake and milk yield were recorded daily, body weight was measured 3 to 5 times per week, and milk components were analyzed 2 d/wk. Individual DM intake was regressed on milk energy output, metabolic body weight, body energy gain, and fixed effects of parity, experiment, cohort (a group of cows that received treatments in the same sequence) nested within experiment, and diet nested within cohort and experiment, with the residual being RFI. High RFI cows ate more than expected and were deemed less efficient. Residual feed intake correlated negatively with digestibility of starch for both HS (r = ?0.31) and LS (r = ?0.23) diets, and with digestibilities of DM (r = ?0.30) and NDF (r = ?0.23) for LS diets but was not correlated with DM or NDF digestibility for HS diets. For each cohort within an experiment, cows were classified as high RFI (HRFI; >0.5 SD), medium RFI (MRFI; ±0.5 SD), and low RFI (LRFI; <?0.5 SD). Digestibility of DM was similar (~66%) among HRFI and LRFI for HS diets but greater for LRFI when fed LS diets (64 vs. 62%). For LS diets, digestibility of DM could account for up to 31% of the differences among HRFI and LRFI for apparent diet energy density, as determined from individual cow performance, indicating that digestibility explains some of the between-animal differences for the ability to convert gross energy into net energy. Some of the differences in digestibility between HRFI and LRFI were expected because cows with high RFI eat at a greater multiple of maintenance, and greater intake is associated with increased passage rate and digestibility depression. Based on these data, we conclude that a cow’s digestive ability explains none of the variation in RFI for cows eating high starch diets but 9 to 31% of the variation in RFI when cows are fed low starch diets. Perhaps differences in other metabolic processes, such as tissue turnover, heat production, or others related to maintenance, can account for more variation in RFI than digestibility.  相似文献   

10.
A lactating cow trial was conducted to study the effects of dietary addition of oregano leaf material (Origanum vulgare L.; OV; 0, control vs. 500 g/d) on ruminal fermentation, methane production, total tract digestibility, manure gas emissions, N metabolism, organoleptic characteristics of milk, and dairy cow performance. Eight primiparous and multiparous Holstein cows (6 of which were ruminally cannulated) were used in a crossover design trial with two 21-d periods. Cows were fed once daily. The OV material was top-dressed and mixed with a portion of the total mixed ration. Cows averaged 80 ± 12.5 d in milk at the beginning of the trial. Rumen pH, concentration of total and individual volatile fatty acids, microbial protein outflow, and microbial profiles were not affected by treatment. Ruminal ammonia-N concentration was increased by OV compared with the control (5.3 vs. 4.3 mM). Rumen methane production, which was measured only within 8 h after feeding, was decreased by OV. Intake of dry matter (average of 26.6 ± 0.83 kg/d) and apparent total tract digestibly of nutrients did not differ between treatments. Average milk yield, milk protein, lactose, and milk urea nitrogen concentrations were unaffected by treatment. Milk fat content was increased and 3.5% fat-corrected milk yield tended to be increased by OV, compared with the control (3.29 vs. 3.12% and 42.4 vs. 41.0 kg/d, respectively). Fat-corrected (3.5%) milk feed efficiency and milk net energy for lactation (NEL) efficiency (milk NEL ÷ NEL intake) were increased by OV compared with the control (1.64 vs. 1.54 kg/kg and 68.0 vs. 64.4%, respectively). Milk sensory parameters were not affected by treatment. Urinary and fecal N losses, and manure ammonia and methane emissions were unaffected by treatment. Under the current experimental conditions, supplementation of dairy cow diets with 500 g/d of OV increased milk fat concentration, feed and milk NEL efficiencies, and tended to increase 3.5% fat-corrected milk yield. The sizable decrease in rumen methane production with the OV supplementation occurred within 8 h after feeding and has to be interpreted with caution due to the large within- and between-animal variability in methane emission estimates. The OV was introduced into the rumen as a pulse dose at the time of feeding, thus most likely having larger effect on methane production during the period when methane data were collected. It is unlikely that methane production will be affected to the same extent throughout the entire feeding cycle.  相似文献   

11.
The objective of this study was to evaluate the potential of selection for feed utilization on associated blood plasma metabolite and hormone traits. Dry matter intake (DMI) was recorded in 970 Holsteins from 11 commercial farms in Pennsylvania and used to derive dry matter efficiency (DME; fat-corrected milk yield/DMI), crude protein efficiency (CPE; protein yield/crude protein intake), and residual feed intake (RFI, defined as actual feed intake minus expected feed intake for maintenance and milk production, based on calculation of DMI adjusted for yield, body weight, and body condition score). Estimated breeding values for the 4 feed utilization traits (DMI, DME, CPE, and RFI), yield traits, body traits, and days open were standardized according to their respective genetic standard deviations. Up to 631 blood samples from 393 cows from 0 to 60 d in milk (DIM) were evaluated for blood plasma concentrations of glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), creatinine, urea, growth hormone (GH), 3,5,3′-triiodothyronine (T3), and other parameters. Blood plasma traits were regressed on DIM, lactation number, herd, and standardized genetic merit. Cows with higher genetic merit for yield had significantly higher concentrations of GH, NEFA (milk and protein yield), and BHB (fat yield) from 31 to 60 DIM, but lower concentrations of glucose from 0 to 30 DIM, and T3 (milk yield, 0–60 DIM). The high GH–low glucose–low T3 concentration pattern was further accentuated for cows with genetic merit for enhanced feed efficiency (higher DME and lower RFI). Cows with a genetic tendency to be thin (low body condition score) also had elevated GH concentrations, but lower blood glucose, creatinine, and T3 concentrations. Those characteristics associated with enhanced feed efficiency (higher GH and lower glucose and T3 concentrations) were unfavorably associated with fertility, as indicated by elevated days open. Elevated NEFA and BHB concentrations were also associated with extended days open. Consideration of metabolic profiles when evaluating feed efficiency might be a method of maintaining high levels of health and reproductive fitness when selecting for feed efficiency.  相似文献   

12.
The objective of this experiment was to measure ruminal and lactational responses of Holstein dairy cows fed diets containing 3 different starch levels: 17.7 (low; LS), 21.0 (medium; MS), or 24.6% (high; HS). Twelve multiparous cows (118 ± 5 d in milk) were assigned randomly to dietary treatment sequence in a replicated 3 × 3 Latin square design with 3-wk periods. All diets were fed as total mixed rations and contained approximately 30.2% corn silage, 18.5% grass silage, and 5.0% chopped alfalfa hay. Dietary starch content was manipulated by increasing dry ground corn inclusion (% of dry matter) from 3.4 (LS) to 10.1 (MS) and 16.9 (HS) and decreasing inclusion of beet pulp and wheat middlings from 6.7 and 13.4 (LS) to 3.4 and 10.1 (MS) or 0 and 6.8 (HS). In vitro 6-h starch digestibility of the diet increased as nonforage sources of fiber replaced corn grain (% of dry matter; 73.6, HS; 77.3, MS; 82.5, LS) resulting in rumen-fermentable starch content by 14.6, 16.2, and 18.1% for the LS, MS, and HS diets, respectively. Diets had similar neutral detergent fiber from forage and particle size distributions. Dry matter intake, solids-corrected milk yield, and efficiency of solids-corrected milk production were unaffected by diet, averaging 26.5 ± 0.8, 40.8 ± 1.6, and 1.54 ± 0.05 kg/d, respectively. Reducing dietary starch did not affect chewing time (815 ± 23 min/d), mean ruminal pH over 24 h (6.06 ± 0.12), acetate-to-propionate ratio (2.4 ± 0.3), or microbial N synthesized in the rumen (585 ± 24 g/d). Total tract organic matter digestibility was higher for HS compared with MS and LS diets (69.2, 67.3, and 67.0%, respectively), but crude protein, neutral detergent fiber, and starch digestibilities were unaffected. As dietary starch content decreased, in vitro ruminal starch fermentability increased and, consequently, the range between HS and LS in rumen-fermentable starch (3.5 percentage units) was less than the range in starch content (6.9 percentage units). Under these conditions, dietary starch content had no measurable effect on ruminal fermentation or short-term lactational performance of high-producing Holstein dairy cows.  相似文献   

13.
Thirty-five lactating dairy cows throughout weeks of lactation (WOL) 16 to 30 were used to determine optimal time needed for reliable measurement of performance variables, and to classify the cows into high-, medium-, and low-efficiency groups. Individual performance variables [body weight (BW), dry matter intake (DMI), and milk production] were measured daily with a computerized monitoring system. Body condition was visually scored weekly and used to calculate retained or depleted body energy as a result of fat content change (REF). Milk composition was analyzed weekly. Body weight, DMI, and total recovered energy (RE), which represents energy in milk production plus REF, were summarized weekly. Efficiency was calculated as RE/DMI and as residual feed intake (RFI; i.e., the difference between actual and expected DMI), which was calculated from multiple linear regression of DMI dependence on BW0.75 and RE. Unexpectedly, it was found that BW did not affect DMI and RE/DMI. Changes and relative changes in phenotypic coefficient of variation and correlations among data from shortened tests ranging from 1 wk (WOL 16) to a sequence of 15-wk tests were used to determine optimal test period durations for 5 traits: BW, DMI, RE, RE/DMI, and RFI. Traits were fitted into a mixed model with repeated measures. For each week, the traits were summarized as a sequence of cumulative data, starting from WOL 16 and cumulated over periods that increased in 1-wk steps up to WOL 16 to 29. Weekly cumulations were compared with those for entire test period (WOL 16 to 30). Consistency of each cow’s efficiency classification as high, medium, or low was tested by the total-agreement procedure; the kappa index P-value was used. Throughout WOL 16 to 30, the effects of increasing test period duration on between-animal coefficient of variation differed with respect to the various performance variables and RE/DMI: it tended to change with respect to BW, did not change with respect to DMI, and decreased with respect to RE and RE/DMI. In conclusion, compared with a 15-wk study, a 2-wk study can classify RFI and RE/DMI to 3 efficiency levels, with an individual correlation coefficient of 0.6. When the study was carried out over 3 wk or more, the lowest significant index of the classification was P < 0.004, the lowest individual correlation coefficient was 0.65, and its lowest significance was P < 0.01. The current study indicated that the insignificant effect of the BW of dairy lactating cows on their DMI should be validated in more studies.  相似文献   

14.
High feed costs make feed conversion efficiency a desirable target for genetic improvement. Residual feed intake (RFI), calculated as the difference between observed and predicted intake, is a commonly used estimate of feed efficiency. However, determination of feed efficiency in dairy herds is challenging due to difficulties in measuring feed intake of individual animals reliably. Using residual CO2 (RCO2) production as an estimate of feed efficiency would allow ranking the cows according to feed efficiency, provided that CO2 production is closely related to heat production and feed intake. The objective of this study was to evaluate the potential of RCO2 as an index of feed efficiency using data from respiration calorimetry studies (289 cow per period observations). Heat production was precisely predicted from CO2 production [root mean square error (RMSE)] adjusted for random effects was 1.5% of observed mean]. Dry matter intake (DMI) was better predicted from energy-corrected milk (ECM) yield and CO2 production than from ECM yield and body weight in the model (adjusted RSME = 0.92 vs. 1.39 kg/d). Residual CO2 production estimated as the difference between actual CO2 production and that predicted from ECM yield, metabolic body weight was closely related to RFI (adjusted RMSE = 0.42) that was calculated as the difference between actual DMI and that predicted from ECM, metabolic body weight, and energy balance (EB). When the cows were categorized in 3 groups of equal sizes on the basis of RCO2 (low, medium, and high), low RCO2 cows had lower DMI, RFI, methane production and intensity (g/kg ECM), and heat production, but higher efficiency of metabolizable energy utilization for lactation than high RCO2 cows. When RFI was predicted from RCO2, the residuals (observed – predicted) were negatively related to EB and digestibility. Predicting RFI with a 2-variable model based on RCO2 and digestibility, adjusted RMSE decreased to 0.23 kg/d, and residuals were not significantly related to EB. The cows in low RCO2 group had a higher energy digestibility than the cows in the high RCO2 group, and differences in EB were observed between the groups. Error of the model predicting residual ECM production from RCO2 was 1.41 kg/d. The residuals were positively related to ECM yield and energy digestibility. Predicting residual ECM from RCO2 and ECM yield decreased adjusted RMSE to 1.07 kg/d, and further to 0.78 kg/d when digestibility was included in the 2-variable model. It is concluded that RCO2 has a potential for ranking individual cows based on feed efficiency.  相似文献   

15.
The objective of this study was to identify genomic regions and candidate genes associated with feed efficiency in lactating Holstein cows. In total, 4,916 cows with actual or imputed genotypes for 60,671 single nucleotide polymorphisms having individual feed intake, milk yield, milk composition, and body weight records were used in this study. Cows were from research herds located in the United States, Canada, the Netherlands, and the United Kingdom. Feed efficiency, defined as residual feed intake (RFI), was calculated within location as the residual of the regression of dry matter intake (DMI) on milk energy (MilkE), metabolic body weight (MBW), change in body weight, and systematic effects. For RFI, DMI, MilkE, and MBW, bivariate analyses were performed considering each trait as a separate trait within parity group to estimate variance components and genetic correlations between them. Animal relationships were established using a genomic relationship matrix. Genome-wide association studies were performed separately by parity group for RFI, DMI, MilkE, and MBW using the Bayes B method with a prior assumption that 1% of single nucleotide polymorphisms have a nonzero effect. One-megabase windows with greatest percentage of the total genetic variation explained by the markers (TGVM) were identified, and adjacent windows with large proportion of the TGVM were combined and reanalyzed. Heritability estimates for RFI were 0.14 (±0.03; ±SE) in primiparous cows and 0.13 (±0.03) in multiparous cows. Genetic correlations between primiparous and multiparous cows were 0.76 for RFI, 0.78 for DMI, 0.92 for MBW, and 0.61 for MilkE. No single 1-Mb window explained a significant proportion of the TGVM for RFI; however, after combining windows, significance was met on Bos taurus autosome 27 in primiparous cows, and nearly reached on Bos taurus autosome 4 in multiparous cows. Among other genes, these regions contain β-3 adrenergic receptor and the physiological candidate gene, leptin, respectively. Between the 2 parity groups, 3 of the 10 windows with the largest effects on DMI neighbored windows affecting RFI, but were not in the top 10 regions for MilkE or MBW. This result suggests a genetic basis for feed intake that is unrelated to energy consumption required for milk production or expected maintenance as determined by MBW. In conclusion, feed efficiency measured as RFI is a polygenic trait exhibiting a dynamic genetic basis and genetic variation distinct from that underlying expected maintenance requirements and milk energy output.  相似文献   

16.
The objective of this study was to evaluate the association between uterine disease and indicators of neutrophil (PMN) and systemic energy status in dairy cows. Peripheral blood (120 mL) was collected weekly from 84 Holstein cows for PMN isolation and plasma collection from calving until 42 d in milk (DIM). The final analysis included 80 cows. Of those, 20 cows were classified as having metritis (fetid uterine discharge and fever), 15 as having subclinical endometritis (SCE; ≥10% PMN on uterine cytology), and 45 as healthy controls. Plasma haptoglobin concentration was increased only in cows that developed metritis. Neutrophil glycogen content was reduced in cows developing metritis compared with healthy cows on the day of calving and at 7 and 42 DIM. Cows with SCE had lower PMN glycogen content than healthy cows at 7, 28, and 42 DIM. Blood glucose was affected by disease status within parity. Primiparous metritis cows had greater blood glucose concentrations than healthy primiparous cows. Multiparous metritis cows tended to have lower blood glucose concentration than multiparous SCE cows. Cows that developed metritis and SCE had or tended to have greater NEFA and BHBA than healthy cows, mainly around calving. At calving, cows that developed metritis had higher plasma estradiol concentration than healthy cows and greater plasma cortisol than cows that had SCE. Plasma insulin was not affected. Plasma glucagon was increased for SCE cows. Cows that developed uterine disease experienced a greater degree of negative energy balance and had decreased lower intracellular PMN glycogen levels, which could be a major predisposing factor for disease because of decreased availability of oxidative fuels.  相似文献   

17.
《Journal of dairy science》2019,102(12):11225-11232
The main objective of this study was to assess the genetic background of colostrum yield and quality traits after calving in Holstein dairy cows. The secondary objective was to investigate genetic and phenotypic correlations among laboratory-based and on-farm–measured colostrum traits. The study was conducted in 10 commercial dairy herds located in northern Greece. A total of 1,074 healthy Holstein cows with detailed pedigree information were examined from February 2015 to September 2016. All cows were clinically examined on the day of calving and scored for body condition. All 4 quarters were machine-milked, and a representative and composite colostrum sample was collected and examined. Colostrum total solids (TS) content was determined on-farm using a digital Brix refractometer. Colostrum fat, protein, and lactose contents were determined using an infrared milk analyzer, and energy content was calculated using National Research Council (2001) equations. Dry period length (for cows of parity ≥2), milk yield of previous 305-d lactation (for cows of parity ≥2), age at calving, parity number, season of calving, time interval between calving and first colostrum milking, and milk yield were recorded. Each trait (colostrum yield and quality traits) was analyzed with a univariate mixed model, including fixed effects of previously mentioned factors and the random animal additive genetic effect. All available pedigrees were included in the analysis, bringing the total animal number to 5,662. Estimates of (co)variance components were used to calculate heritability for each trait. Correlations among colostrum traits were estimated with bivariate analysis using the same model. Mean percentage (±SD) colostrum TS, fat, protein, and lactose contents were 25.8 ± 4.7, 6.4 ± 3.3, 17.8 ± 4.0, and 2.2 ± 0.7%, respectively; mean energy content was 1.35 ± 0.3 Mcal/kg and mean colostrum yield was 6.18 ± 3.77 kg. Heritability estimates for the above colostrum traits were 0.27, 0.21, 0.19, 0.15, 0.22, and 0.04, respectively. Several significant genetic and phenotypic correlations were derived. The genetic correlation of TS content measured on-farm with colostrum protein was practically unity, whereas the correlation with energy content was moderate (0.61). Fat content had no genetic correlation with TS content; their phenotypic correlation was positive and low. Colostrum yield was not correlated genetically with any of the other traits. In conclusion, colostrum quality traits are heritable and can be amended with genetic selection.  相似文献   

18.
Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG). Each cow received 2 treatments: control (no infusion) and infusion of 650 g of PG into the rumen at the time of the morning feeding. Propylene glycol was infused on the day of sampling only. Samples of arterial, portal, and hepatic blood as well as ruminal fluid were obtained at 0.5 h before feeding and at 0.5, 1.5, 2.5, 3.5, 5, 7, 9, and 11 h after feeding. Infusion of PG did not affect ruminal pH or the total concentration of ruminal volatile fatty acids, but did decrease the molar proportion of ruminal acetate. The ruminal concentrations of PG, propanol, and propanal as well as the molar proportion of propionate increased with PG infusion. The plasma concentrations of PG, ethanol, propanol, propanal, glucose, l-lactate, propionate, and insulin increased with PG and the plasma concentrations of acetate and β-hydroxybutyrate decreased. The net portal flux of PG, propanol, and propanal increased with PG. The hepatic uptake of PG was equivalent to 19% of the intraruminal dose. When cows were dosed with PG, the hepatic extraction of PG was between 0 and 10% depending on the plasma concentration of PG, explaining the slow decrease in arterial PG. The increased net hepatic flux of l-lactate with PG could account for the entire hepatic uptake of PG, which suggests that the primary hepatic pathway for PG is oxidation to l-lactate. The hepatic uptake of propanol increased with PG, but no effects of PG on the net hepatic and net splanchnic flux of glucose were observed. Despite no effect of PG on net portal flux and net hepatic flux of propionate, the net splanchnic flux of propionate increased and the data suggest that propionate produced from hepatic metabolism of propanol is partly released to the blood. The data suggest that PG affects metabolism of the cows by 2 modes of action: 1) increased supply of l-lactate and propionate to gluconeogenesis and 2) insulin resistance of peripheral tissues induced by increased concentrations of PG and propanol as well as a decreased ratio of ketogenic to glucogenic metabolites in arterial blood plasma.  相似文献   

19.
《Journal of dairy science》2019,102(7):6559-6570
The variation in feed efficiency among dairy cows is due to differences in fermentation and digestion characteristics, but recent studies have suggested that various aspects of postabsorptive metabolic processes including heat production or the metabolizable energy for maintenance are more crucial. Thus, metabolic efficiency largely determines feed efficiency, but whether divergent feed efficient cows differ in O2 consumption and metabolic CO2 production, directly determining the metabolic rate has not been investigated. Therefore, the objective of the present study was to determine whether variation in ME intake (MEI), O2 consumption, and metabolic CO2 production account for the variation in metabolic efficiency of dairy cows and whether this effect persists across the lactation cycle. Eighteen cows with different German breeding value functional herd life were kept in freestalls with ad libitum access to a total mixed ration that was kept constant in composition throughout the first lactation. Cows were blood sampled and weighed at wk 5, 13, and 42 postpartum (pp) and transferred into respiration chambers. Animals were retrospectively clustered according to MEI, O2 consumption, and metabolic CO2 production, each normalized to metabolic body weight (mBW). Cluster analysis revealed 9 high metabolically efficient (high-Meff) and 9 low metabolically efficient cows. The high-Meff cows had greater MEI and feed conversion efficiency, produced less metabolic CO2 and methane, had a stronger negative energy balance, and tended to have a lower metabolic respiratory quotient. Further, high-Meff cows had lower residual MEI, less heat energy loss, and lower plasma glucose concentrations, but used a greater portion of body reserves instead of feed energy for milk synthesis, particularly at wk 5 and 13 pp. However, these group differences did not persist by wk 42 pp. Cow groups were not different in O2 consumption, milk yield, metabolizable energy for maintenance, or the efficiency of tissue utilization for milk synthesis, but high-Meff cows tended to have the lower German relative breeding value functional herd life, indicating a link between metabolic performance and productive lifespan. In conclusion, the use of a clustering approach involving MEI/mBW, O2/mBW, and CO2/mBW seems to be a promising method to differentiate cows with divergent metabolic efficiency but does not allow identifying an individual metabotype that persists across the whole lactation cycle.  相似文献   

20.
Two studies were conducted to evaluate visual locomotion scoring (VLS) and Stepmetrix locomotion scoring (SLS) in detecting painful digit lesions. In study 1, one veterinarian performed VLS. Cows with VLS ≥3 were hoof trimmed and the presence or absence of a painful lesion (PL), defined as a reaction to digital pressure, was recorded. A strongly increasing pattern in the proportion of cows with PL was detected as VLS increased. The proportions of cows with painful lesions were 5.6% (n = 53), 20.1% (n = 78), 55.5% (n = 164), 79.9% (n = 159), and 100% (n = 5) for VLS 1 to 5, respectively. Study 2 was conducted on a different farm. The entire farm was visually locomotion scored by 3 veterinarians on the same day, and the cows were Stepmetrix locomotion scored by walking through the Stepmetrix system. Every cow was trimmed during the following 2 d by 1 of 8 professional hoof trimmers. The 3 veterinarians identified, scored, and recorded any PL. Interobserver agreement for the 3 veterinarians had a kappa coefficient of between 0.45 and 0.48 ± 0.05. In total, 518 cows were used in the analysis, from which 11.2% were identified with a PL. Of the cows diagnosed with a PL, 32.8% were detected with a sole ulcer, 25.9% with white line disease, 13.8% with white line abscess, and 27.5% with other diseases. A receiver operating characteristic analysis was performed; the area under the curve was larger for VLS (0.80; 95% confidence interval, 0.76 to 0.83) than SLS (0.62; 95% confidence interval, 0.57 to 0.66). When performed by trained veterinarians, VLS performed better than SLS in detecting PL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号