首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The valuable lactose derivatives lactulose and epilactose can be derived from lactose either by the Lobry de Bruyn-Alberda van Ekenstein transformation during heat treatments or by enzymatic conversion using cellobiose 2-epimerases (EC 5.1.3.11). The chromatographic determination of lactose, lactulose, and epilactose in milk is challenging, due to the variable ratio of the three saccharides and their similar retention properties. In this work, a dual high-performance liquid chromatography (HPLC) analysis for the quantification of lactose, lactulose, and epilactose in milk samples was developed and validated. The samples originated from an enzymatic lactose conversion using the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Application of this enzyme led to the formation of high lactulose concentrations (28.0 g/L) in milk. The dual HPLC analysis utilized a combination of two chromatographic separation techniques, configured in two parallel systems. After precolumn derivatization, the samples were analyzed as follows: Method 1 determined the concentration of lactose and epilactose using a C18 column with an ion-pair reagent as eluent, coupled with a UV detector. Method 2 determined the concentration of lactulose using a trimodal stationary phase (hydrophilic interaction, anion- and cation-exchange properties) with acetonitrile/ammonium formiate buffer as eluent, coupled with an evaporative light scattering detector. Both methods were validated in terms of linearity, precision and recovery. The revealing detection limits in the milk samples were 3.32 mg/L for lactose, 4.73 mg/L for epilactose and 139 mg/L for lactulose. The dual HPLC analysis presented allows accurate lactose, lactulose, and epilactose separation in complex food matrices such as milk.  相似文献   

2.
《Journal of dairy science》2021,104(9):9437-9449
Bacillus subtilis is a generally recognized as safe probiotic, which is used as a starter for natto fermentation. Natto is a functional food with antithrombus function due to nattokinase. Compared with natto, fermented milk is a more popular fermented food, which is commonly fermented by Lactobacillus bulgaricus and Streptococcus. However, there is no report on B. subtilis–fermented milk. In this study, to produce a functional fermented milk with antithrombus function, a B. subtilis strain (B. subtilis JNFE0126) that produced both nattokinase and milk-clotting enzyme was isolated from traditionally fermented natto and used as the starter for the functional fermented milk. In liquid fermentation culture, the peak values of thrombolytic activity and milk-clotting activity were 3,511 U/mL at 96 h and 874.5 Soxhlet unit/mL at 60 h, respectively. The optimal pH and temperature were pH 7.0 at 40°C for nattokinase and pH 6.5 and 55°C for milk-clotting enzyme, respectively. The thrombolytic activity in the fermented milk reached 215.1 U/mL after 8 h of fermentation. Sensory evaluation showed that the acceptance of the milk fermented by B. subtilis JNFE0126 was similar to the traditional milk fermented by L. bulgaricus and S. thermophilus. More importantly, oral intake of the fermented milk by the thrombosis-model mice prevented the development of thrombosis. Our results suggest that B. subtilis JNFE0126–fermented milk has potential as a novel, functional food in the prevention of thrombosis-related cardiovascular diseases.  相似文献   

3.
It was reported recently that cellobiose 2-epimerases (CE) from various aerobic microorganisms convert lactose to epilactose in defined buffer systems. In this study, we showed that CE from 2 mesophilic microorganisms, Flavobacterium johnsoniae and Pedobacter heparinus, were capable of converting lactose to prebiotic epilactose not only in buffer but also in a complex milk system. First, the 2 enzymes were separately cloned, recombinantly expressed in Escherichia coli, and purified by column chromatography. The production of F. johnsoniae CE was carried out in a stirred-tank reactor, indicating that future upscaling is possible. The bioconversions of milk lactose were carried out at an industrially relevant low temperature of 8°C to avoid undesired microbial contaminations or chemical side reactions. Both enzymes were reasonably active at this low temperature, because of their origin from mesophilic organisms. The enzymes showed different operational stabilities over a 24-h time-course. A conversion yield of about 30 to 33% epilactose was achieved with both enzymes. No side products were detected other than epilactose. Therefore, CE may introduce an added value for particular dairy products by in situ production of the prebiotic sugar epilactose.  相似文献   

4.
Most of the fermentation experiment designs were limited by the low-throughput of shake flask, especially for the medium optimization. A simple high-throughput screening system was developed for the determination of pigment in Monascus purpureus fermentation samples. This downscaled system was designed to optimize medium composition combined with statistical methods. The total 29 experiments designed by the Box-Behnken were used to study the 4 most important operating variables on pigment production. The analysis revealed that the optimum concentrations of glucose, peptone, NaNO3, and KH2PO4 were 51.42, 4.91, 1.00, and 1.00 g/L, respectively. A production of 69.5 U/mL was achieved in agreement with the prediction (68.9 U/mL) fermented in 24-deep-well microtiterplates. Furthermore, the fermentation medium optimized in the high-throughput system was verified in shake flasks, and the pigment production could be enhanced from 206.5 U/mL in un-optimized medium to 265.8 U/mL, giving nearly 1.30-fold increase in production.  相似文献   

5.
红曲红是一种由红曲霉生产的具有较高药用及营养价值的天然色素。为提高红曲红液态发酵产量,利用常压室温等离子体诱变技术(ARTP)对紫红曲霉(Monascus purpureus)LBBE进行诱变并优化了发酵条件。确定ARTP诱变条件为:红曲霉孢子浓度107个/mL、通气量10 SLM、功率80 W、诱变时间42 s。上述诱变条件下,经10轮诱变,红曲霉正向突变率从44.6 %降至3.8%,突变株LBBE-15的红曲红色价达到1 244 U/mL,较出发菌株提高1.26倍。红曲霉培养条件优化确定为:接种体积分数7%、硫酸锰1 g/L、初始pH 3.7。优化后的红曲红色价达到1 376 U/mL。50 L罐分批发酵显示,红曲红色价为642 U/mL。该研究结果为实现工业大规模生产提供了数据参考。  相似文献   

6.
为提高毕赤酵母重组菌产伏马毒素B1(fumonisin B1,FB1)羧酸酯酶的摇瓶发酵水平,以酶活力为指标,对发酵条件和培养基进行优化。通过单因素试验对发酵条件进行优化。通过Plackett-Burman试验筛选出关键培养基成分,再进行正交试验建立试验数据样本,最后建立误差反向传播神经网络模型进行预测并寻找最优发酵培养基组成。经优化得到的发酵条件:诱导温度28℃,初始p H 6.0,每24 h补加体积分数为1%的甲醇,诱导96 h;优化后发酵培养基组成:蛋白胨23 g/L、KH2PO444 g/L、PTM4 (Pichia trace minerals 4)微量元素溶液1.5 m L/L、K2SO47.15 g/L、Mg SO4·7H2O 5.85 g/L和酵母粉5 g/L。FB1羧酸酯酶酶活力达到402 U/m L以上,较优化前提高了1.19倍。优化后显著提高了重组菌株的产酶能力,研究结果为FB1羧酸酯酶发酵罐优化提供了基础数据。  相似文献   

7.
Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker’s yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a β-glucosidase (GH1-1, which also acts as a β-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1–expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358 g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast.  相似文献   

8.
We recently reported that cellobiose 2-epimerase from Ruminococcus albus effectively converted lactose to epilactose. In this study, we examined the biological effects of epilactose on intestinal microbiota, bile acid metabolism, and postadministrative plasma glucose by animal tests. Dietary supplementation with epilactose or fructooligosaccharide (4.5% each) increased cecal wall weight and cecal contents and decreased the pH of the cecal contents in Wistar-ST rats. The number of total anaerobes tended to be greater in rats fed epilactose and fructooligosaccharide than in those fed the control diet. Lactobacilli and bifidobacteria were more numerous in rats fed epilactose and fructooligosaccharide diets than in those fed the control diet. Analysis of clone libraries of 16S rRNA suggests that supplementation with epilactose did not induce the proliferation of harmful bacteria belonging to classes Clostridia or Bacteroidetes. Epilactose, as well as fructooligosaccharide, inhibited the conversion of primary bile acids to secondary bile acids, which are suggested to be promoters of colon cancer. In addition, oral administration of epilactose did not elevate the plasma glucose concentration in ddY mice. These results clearly indicate that epilactose is a promising prebiotic. We also showed that cellobiose 2-epimerase converted lactose in cow milk and a spray-dried ultrafiltrate of cheese whey to epilactose. Cellobiose 2-epimerase may increase the value of dairy products by changing lactose to epilactose possessing prebiotic properties.  相似文献   

9.
响应面法优化重组大肠杆菌产ADI酶发酵培养基   总被引:1,自引:0,他引:1       下载免费PDF全文
在单因素优化的基础上,采用响应面分析方法对重组大肠杆菌生产精氨酸脱亚胺酶(ADI)的发酵培养基进行了优化。借助于SAS软件,结合Plackett-Burman和Box-Behnken实验设计对5种培养基组分进行优化。结果表明,最佳培养基组分为胰蛋白胨11.16 g/L,酵母提取物20 g/L,甘油6.3 g/L,磷酸氢二钾16.38 g/L,磷酸二氢钾2.31 g/L。采用优化后的培养基进行摇瓶发酵,ADI酶活达到5.7 U/m L发酵液,比初始培养基(3.72 U/m L发酵液)提高了1.53倍,比LB培养基(2.83 U/m L发酵液)提高了2.01倍。采用优化后的培养基在3 L发酵罐中进行发酵,ADI酶活达到15.17 U/m L发酵液,较LB培养基(4.32 U/m L发酵液)提高了3.51倍。  相似文献   

10.
Chitin was bio-extracted in one-step from shrimp shells by successive co-fermentation using Bacillus subtilis and Lactobacillus plantarum in this study. To construct this co-fermentation system, B. subtilis was first cultured for 3 days for deproteinization (DP), and then L. plantarum was inoculated for demineralization (DM). After 6 days of co-fermentation, the final DP and DM efficiency reached 94.1% and 96.3%, respectively. The molecular weight, degree of acetylation, and crystalline index of chitin were reduced by 9.8, 5.6 and 1.4% with the DP time of 2 days extending to 3 days. Meanwhile, L. plantarum instead of B. subtilis became the dominant bacterium on day 5 of co-fermentation, with L. plantarum count of 6.19 log CFU/mL and lactic acid concentration of 28.22 g/L, respectively. The chitin prepared in this study exhibited similar structural characterization as commercial chitin. One step successive co-fermentation was a simple and feasible approach for high-quality chitin preparation.Industrial relevance: This study establishes one-step bio-extraction of chitin from shrimp shells by successive co-fermentation using B. subtilis followed by L. plantarum. One-step successive co-fermentation simplifies the intermediate processes of conventional two-step fermentation for extracting chitin. DP and DM happen during the entire co-fermentation period, which helps to achieve satisfactory DP and DM efficiency. This innovative yet simple method provides more possibilities for the biotechnological production of chitin on an industrial scale.  相似文献   

11.
热稳定性过氧化氢酶工程菌株发酵条件的研究   总被引:4,自引:1,他引:4  
重组大肠杆菌UM2 1携带来自嗜热脂肪芽孢杆菌过氧化氢酶的基因 ,在以IPTG作为诱导物时 ,在IPTG浓度为 0 75mmol/L、起始 pH6 5、装液量 5 0mL/2 5 0mL三角瓶的条件下 3 7℃诱导 3h ,酶的表达水平最佳 ;在以乳糖作为诱导物时 ,在乳糖质量浓度为 10 g/L、起始 pH7 5、装液量 5 0mL/2 5 0mL三角瓶的条件下 ,3 7℃诱导 5h ,酶的活力最高。乙酸的存在能够抑制酶的表达。工程菌在最适条件下酶活力可达 3 0 0 0 0~ 3 5 0 0 0U/L以上 ,约是原始菌株嗜热脂肪芽孢杆菌的 10倍。工程菌在无选择压力的条件下连续传代 60代 ,基本保持稳定 ,连续传代 10 0代 ,仍有 80 %左右的菌株携带重组质粒。  相似文献   

12.
A study on optimisation of the conditions for galactooligosaccharide (GOS) formation during lactose hydrolysis, produced by Lactozym 3000 L HP G, was carried out. The synthesis was performed during times up to 300 min at 40, 50 and 60 °C, pH 5.5, 6.5 and 7.5, lactose concentration 150, 250 and 350 mg/mL and enzyme concentration 3, 6 and 9 U/mL. The product mixtures were analysed by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). During the hydrolysis of lactose, besides glucose and galactose, galactobiose, allolactose and 6′ galactosyl lactose were also formed as a result of transgalactosylation catalysed by the enzyme. The effect of the reaction conditions was different in the formation of di- and the trisaccharide. Thus, the optimal conditions for galactobiose and allolactose synthesis were 50 °C, pH 6.5, 250 mg/mL of lactose, 3 U/mL of enzyme and 300 min, whereas the best reaction conditions for 6′ galactosyl lactose production were 40 °C, pH 7.5, 250 mg/mL of lactose, 3 U/mL of enzyme and 120 min. These results show the possibility to obtain reaction mixtures with Lactozym 3000 L HP G, with different composition, depending on the assayed conditions.  相似文献   

13.
采用响应面法对里氏木霉产木聚糖酶的发酵培养基进行了优化。首先利用Plackett-Burman实验设计筛选出影响产酶的3个主要因素:乳糖、玉米浆和KH2PO4。在此基础上运用最陡爬坡路径法逼近最大响应值区域,最后利用响应面分析法确定主要因子之间的交互作用及最佳条件。结果表明,乳糖45.13g/L,玉米浆15.94g/L,(NH4)2SO43g/L,KH2PO42.73g/L,MgSO4·7H2O0.8g/L,无水CaCl20.6g/L,吐温-801mL/L时,木聚糖酶最大理论酶活为855.01U/mL。经5次平行实验验证,实际平均酶活与预测酶活相近,比优化之前的酶活提高了24.1%。   相似文献   

14.
研究异丙基硫代-β-D-呋喃半乳糖苷(isopropyl-β-D-1-thiogalactopyranoside,IPTG)与乳糖联合诱导重组大肠杆菌右旋糖酐蔗糖酶表达的效果。在利用IPTG和乳糖分别作为诱导剂对右旋糖酐蔗糖酶工程菌Escherichia coliBL21(DE3)/pET28-dexYG进行诱导表达的基础上,尝试将此两种诱导剂联合使用,在降低成本的同时获得较好的表达效果。在获得最佳培养基的基础上,考察菌体IPTG与乳糖的联合加入量、菌体浓度、诱导时间对右旋糖酐蔗糖酶表达的影响。在菌浓(OD600 nm)达到3.0时,加入0.1 mmol/L IPTG 95 μL+2.5 g/L乳糖,25 ℃混合诱导培养4 h,酶活力最高,达到40.44 U/mL。IPTG与乳糖联合诱导重组大肠杆菌右旋糖酐蔗糖酶表达可行。  相似文献   

15.
分别利用IPTG和乳糖两种诱导物诱导蔗糖异构酶(SIase)基因在E.coliBL21(DE3)中实现表达,对诱导温度、诱导时机、诱导物浓度、诱导持续时间进行比较分析并优化,确定了二者的最佳诱导条件,在E.coli培养3h后(OD600约为0.9)添加终浓度为0.8mmol/L的IPTG(0.5mmol/L乳糖)在20℃(24℃)条件下诱导14h(12h)能获得最高的蛋白表达量及SIase酶活。在最优条件下以IPTG为诱导物时目的蛋白占总蛋白的41.6%,单位体积培养液中SIase酶活为12.37U/mL,以乳糖为诱导物时分别为27.2%,14.72U/mL,从收获酶活角度考虑可见乳糖作为诱导物的优势;而后利用海藻酸钠包埋法固定化重组菌,转化初始浓度为500g/L的蔗糖溶液,转化10~11h后异麦芽酮糖平均得率在83%以上,蔗糖平均转化率大于99%,固定化细胞能够连续稳定转化25批次,转化效率相对于原始菌提高了近55%。  相似文献   

16.
We have previously reported the implication of Bacillus in the production of pectinolytic enzymes during cocoa fermentation. The objective of this work was to identify the Bacillus strains isolated from cocoa fermentation and study their ability to produce pectate lyase (PL) in various growth conditions. Ninety-eight strains were analyzed by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Four different banding patterns were obtained leading to the clustering of the bacterial isolates into 4 distinct ARDRA groups. A subset of representative isolates for each group was identified by 16S rRNA gene partial sequencing. Six species were identified: Bacillus subtilis, Bacillus pumilus, Bacillus sphaericus, Bacillus cereus, Bacillus thuringiensis, together with Bacillus fusiformis which was isolated for the first time from cocoa fermentation. The best PL producers, yielding at least 9 U/mg of bacterial dry weight, belonged to B. fusiformis, B. subtilis, and B. pumilus species while those belonging to B. sphaericus, B. cereus and B. thuringiensis generally showed a low level of activity. Two kinds of PL were produced, as revealed by isoelectrofocusing: one with a pI of 9.8 produced by B. subtilis and B. fusiformis, the other with a pI of 10.5 was produced by B. pumilus. Strains yielded about 2 fold more PL in a pectic compound medium than in glucose medium and maximum enzyme production occurred in the late stationary bacterial growth phase. Together all these results indicate that PL production in the bacilli studied is modulated by the growth phase and by the carbon source present in the medium.  相似文献   

17.
从藏灵菇中分离筛选到的一株高产β-D-半乳糖苷酶菌株ZX-5,经ITS DNA序列分析,鉴定为马克斯克鲁维酵母。对产酶培养基的最佳碳源和氮源优化结果为半乳糖2.0%,胰蛋白胨1.0%;产酶优化条件:温度30℃,培养基初始pH 6.5,装液量30%,转速100 r/min,接种量2.0%,发酵36 h。粗酶液酶活力为2.60 U/mL;经硫酸铵分级沉淀和DEAE离子交换层析,获得纯化酶的比活力为157.35 U/mg。酶最适反应温度35℃,最适pH 6.0,在20~40℃和pH 5.0~7.0的范围内酶的稳定性较好;Mn2+对酶的活性有促进作用。利用菌株ZX-5β-D-半乳糖苷酶分解乳糖并合成低聚半乳糖(galacto-oligosaccharide,GOS),在35℃、乳糖质量浓度60 g/100 mL、酶浓度1.0 U/mL条件下,乳糖水解率达68.34%(50 h),GOS产率达34.70%(40 h),具有潜在的应用前景。  相似文献   

18.
The aim of this research was to assess the amounts of polysaccharide and surfactin produced by Bacillus subtilis ATCC 6633 in rehydrated whey powder (RWP) as the growth medium. One-day-old cultures of B. subtilis (~4.6 log cfu/mL) were inoculated into 100mL of 10, 15, or 20% (wt/vol) RWP and incubated at 30°C for 72 h. To analyze the effects of lactose and protein on polysaccharide and surfactin production, 6 RWP solutions containing different levels of lactose and protein were also used as media. The number of vegetative cells and spores, pH, viscosity, and the concentration of lactose were determined at 0, 24, 48, or 72 h of fermentation. The levels of polysaccharide and surfactin produced after 72 h of fermentation were measured using HPLC and the phenol-sulfuric acid method, respectively. During 72 h of fermentation, B. subtilis populations increased from 4.6 to 10.54, 9.82, and 9.67 log(10) cfu/mL in 10, 15, and 20% RWP, respectively. The number of B. subtilis spores in 10% RWP increased from 3.91 to 4.72 log(10) cfu/mL after 48 and 72 h of fermentation, respectively. The increased level of lactose or protein in RWP did not significantly change the vegetative growth. After 72h of fermentation, the pH of RWP decreased from 5.70 to 4.99 with a slight increase in viscosity. Polysaccharide levels in 10, 15, and 20% RWP after fermentation were 513.6, 613.5, and 768.3mg/L, respectively, with B. subtilis producing 0.18 to 0.29 g/L of surfactin after 72 h of fermentation. The polysaccharide or surfactin production was not changed significantly by addition of protein or lactose to RWP. These results indicate that RWP is a good fermentation substrate for surfactin and polysaccharide production.  相似文献   

19.
利用重组乳酸克鲁维酵母(Kluyveromyces lactis)GG799表达磷脂酶A2,对其产酶发酵条件进行研究。采用单因素试验和正交试验对培养基及培养条件进行优化,确定了重组菌产酶的最佳发酵条件。结果表明:最优培养基组成为葡萄糖30 g/L、酵母粉20 g/L、蛋白胨30 g/L、KH2PO4 3 g/L;最优培养条件为:发酵温度30 ℃、接种量2%(V/V)、初始pH?7.0、装液量90 mL/250 mL三角瓶、摇床转速220 r/min,在此条件下发酵培养,酶活力由(1.87±0.12)U提高到(5.35±0.27)U。  相似文献   

20.
《食品工业科技》2013,(03):180-184
采用单因素实验对Enterobacter sp.SYA2产乳糖酶条件进行优化,优化后的发酵条件为:培养温度37℃、装液量50mL/250mL、摇床转速175r/min、接种量5%(V/V)、种龄8h,此条件下酶活为9.02U/mL;通过Plackett-Burman设计和Box-Behnken设计对菌株发酵培养基进行了优化,得到的最佳发酵培养基配方为:乳糖31.1g/L、蛋白胨26.0g/L、酵母膏5.0g/L、K2HPO43.0g/L、NaCl6.0g/L、MnCl20.5g/L、pH6.5,优化后的酶活为15.95U/mL。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号