首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Effects of chop length (shorter = 10 mm or longer = 19 mm) of alfalfa silage and corn silage were determined in 16 midlactation Holstein cows using a 4 × 4 Latin square design with a 2 × 2 arrangement of treatments. Experimental periods were 21 d long and consisted of 14 d of adaptation and 7 d of sampling. Cows received total mixed ration containing (dry matter basis) 44.0% barley grain-based energy supplement, 12.6% protein supplement, and 21.7% longer chop or shorter chop alfalfa silage and 21.7% longer chop or shorter chop corn silage. Reducing the chop length of alfalfa silage and corn silage reduced the average geometric particle length from 14.4 to 11.0 mm and from 14.2 to 10.4 mm, respectively. Reducing the chop length of both silages reduced the proportion of the diets retained by the 8-and 19-mm screen of the Penn State Particle Separator from 55.0 to 46.0% of dry matter. Reducing the alfalfa chop length increased total rumen volatile fatty acids at 4 to 5 h after feeding but did not affect rumen pH at 4 to 5 h after feeding, feed intake, and milk production. Reducing the corn silage chop length increased dry matter intake from 22.3 to 23.2 kg/d, increased rumen pH at 4 to 5 h after feeding from 6.12 to 6.20, but did not alter rumen volatile fatty acids at 4 to 5 h after feeding or milk production. Daily milk yield, milk fat percentage, and milk protein percentage averaged 38.2 kg/d, 2.62%, and 3.29%, respectively, across all diets. The low milk fat percentages suggest that all diets induced subacute ruminal acidosis (SARA), whereas the rumen pH did not indicate SARA. This discrepancy could be due to a difference in the time of rumen pH measurement and the time of the lowest rumen pH. Hence, the pH data need to be interpreted with caution. Diets could have induced SARA, because for all experimental diets the content of forage neutral detergent fiber was lower than recommended for barley grain-based diets.  相似文献   

2.
Barley silage, cut at the early dough stage, was chopped long (19 mm) or short (10 mm), ensiled, and incorporated into total mixed rations (TMR). The TMR contained (dry matter [DM] basis) either 58.0 or 41.4% concentrate and either short- or long-chopped barley silage. Reducing chop length of barley silage decreased the proportion (asis basis) of TMR particles retained by the 8- and 19-mm screens of the Penn State Particle Separator (PSPS) from 66.9 to 52.7% in the high concentrate TMR and from 74.8 to 60.9% in the low concentrate TMR. Chop length reduction decreased dietary physically effective fiber, calculated as the NDF retained by the 8- and 19-mm screens of the PSPS, from 29.2 to 25.2% DM in the high concentrate TMR and from 34.9 to 30.6% DM in the low concentrate TMR. Reduction in chop length did not affect rumen pH, total rumen volatile fatty acids, milk yield, and milk composition, but increased DM intake from 19.4 to 20.1 kg/d at the high level of concentrate and from 16.9 to 17.7 kg/d at the low level of concentrate and increased rumen propionate. Increasing the concentrate inclusion rate reduced rumen pH from 6.52 to 6.35, did not affect total volatile fatty acids, reduced the acetate-to-propionate ratio from 3.1 to 2.7, increased milk yield from 28.7 to 31.3 kg/d, reduced milk fat content from 3.48 to 2.94%, and increased milk protein content from 3.11 to 3.27% across chop lengths.  相似文献   

3.
Effects of chop length (shorter: 6 mm, or longer: 19 mm) of alfalfa silage and oat silage were determined in 16 mid-lactation Holstein cows, 4 of which were rumen cannulated, using a replicated 4 × 4 Latin square design with a 2 × 2 arrangement of treatments. Experimental periods were 21 d long and consisted of 14 d of adaptation and 7 d of sampling. Cows received a total mixed ration containing [dry matter (DM) basis] 42.0% barley grain-based energy supplement, 10% protein supplement, and 24% of DM longer chop or shorter chop alfalfa silage and 24% of DM longer chop or shorter chop oat silage. Rumen pH was measured continuously, and rumen liquid flow rates were determined in rumen-cannulated cows. Feeding behavior was determined by videotaping, and meal patterns were determined by continuously weighing the feed in the bunk of 8 cows. Reducing the chop length of alfalfa silage and oat silage reduced the average geometric particle length from 14.2 to 10.9 mm and from 13.4 to 10.4 mm, respectively. Reducing the alfalfa chop length did not affect feed intake, whereas reducing the oat silage chop length increased DM intake from to 19.4 to 21.2 kg/d. Reducing the chop lengths of alfalfa silage and oat silage chop length did not affect milk production, rumen fermentation, feeding behavior, meal patterns, and blood metabolites. Daily milk yield, milk fat percentage, and milk protein percentage averaged 36.1 kg/d, 3.00%, and 3.16%, respectively, across diets. The low milk fat percentages suggest that the diets induced subacute ruminal acidosis. This was also substantiated by the rumen pH, which was below 5.6 for more than 122 min/d for all diets. The onset of subacute ruminal acidosis despite apparently adequate dietary neutral detergent fiber content and particle size distribution as well as the long duration of chewing might be attributed to sorting against long feed particles.  相似文献   

4.
The effects of replacing chopped alfalfa hay with alfalfa silage in a total mixed ration containing barley grain and corn silage on production and rumen conditions were investigated. Cows received three diets that all contained (dry matter basis) 38.5% barley grain-based energy supplement, 30.5% corn silage, 17.0% protein supplement, and 4.2% sunflower seeds. One diet contained (dry matter basis) 9.8% of chopped alfalfa hay and no alfalfa silage. One diet contained (dry matter basis) 4.9% chopped alfalfa hay and 4.9% alfalfa silage. One diet contained (dry matter basis) 9.8% of alfalfa silage and no chopped alfalfa hay. Contents of crude protein, neutral detergent fiber, acid detergent fiber, and starch, averaged across diets, were 16.7, 41.3, 21.1, and 24.4% DM, respectively, and did not differ significantly among diets. Replacing chopped alfalfa hay with alfalfa silage decreased the proportion of dietary DM passing through the 8-mm screen of the Penn State Particle Separator from 61.9 to 55.2% dry matter and significantly increased dietary physical effective NDF (peNDF) content, calculated as the NDF retained by the two screens of the Penn State Particle Separator, from 20.1 to 23.3% DM. Replacing chopped alfalfa hay with alfalfa silage also reduced dietary DM content, increased rumen pH from 6.27 to 6.47, reduced volatile fatty acid concentrations, numerically increased milk fat concentration and milk fat yield. Milk yield, milk protein concentration, dry matter intake, and rumen ammonia concentration were not affected.  相似文献   

5.
The effects of replacing chopped alfalfa hay with alfalfa silage in a fine barley grain and alfalfa-based total mixed ration (TMR) were evaluated. Diets contained (dry matter basis) 53.0% commercial energy supplement, 10.3% commercial protein supplement, and 9.7% corn silage. Diets varied in inclusion of chopped alfalfa hay and alfalfa silage, and contained either 20.0% chopped alfalfa hay and 7.0% alfalfa silage, 10.0% chopped alfalfa hay and 17.0% alfalfa silage, or 27.0% alfalfa silage. Contents of crude protein, neutral detergent fiber (NDF), acid detergent fiber, and minerals did not differ among diets. Replacing chopped alfalfa hay with alfalfa silage decreased dietary dry matter, and increased dietary soluble protein and physical effective NDF calculated as the proportion of dietary NDF retained by the 8- and 19-mm screens of the Penn State Particle Separator (peNDF(NDF)) from 13.3 to 15.6% DM. Replacing chopped alfalfa hay with alfalfa silage did not affect dry matter intake, rumen pH, rumen volatile fatty acids, blood lactate, milk fat, and milk protein percentage, but did decrease blood glucose, tended to increase blood urea, and numerically decreased milk yield and milk protein yield. A wider range in peNDF(NDF) and a higher inclusion of corn silage might have resulted in greater differences in rumen fermentation and milk production among diets. The pH of rumen fluid samples collected 4 h after feeding varied from 5.90 to 5.98, and milk fat percentage varied from 2.50 to 2.60% among diets. These values suggest that mild subacute ruminal acidosis was induced by all diets.  相似文献   

6.
The objective of this study was to determine the effects of water addition to a high-moisture total mixed ration (TMR) on feed temperature, feed intake, feed sorting behavior, and milk production of dairy cows. Twelve lactating Holstein cows (155.8 ± 60.1 DIM), individually fed once daily at 1000 h, were exposed to 3 diets in a Latin square design with 28-d treatment periods. Diets had the same ingredient composition [30.9% corn silage, 30.3% alfalfa haylage, 21.2% high-moisture corn, and 17.6% protein supplement; dry matter (DM) basis] and differed only in DM concentration, which was reduced by the addition of water. Treatment diets averaged 56.3, 50.8, and 44.1% DM. The study was conducted between May and August when environmental temperature was 18.2 ± 3.6°C and ambient temperature in the barn was 24.4 ± 3.3°C. Dry matter intake (DMI) was monitored for each animal for the last 14 d of each treatment period. For the final 7 d of each period, milk production was monitored, feed temperature and ambient temperature and humidity were recorded (daily at 1000, 1300, and 1600 h), and fresh feed and orts were sampled for determination of sorting. For the final 4 d of each period, milk samples were taken for composition analysis. Samples taken for determining sorting were separated using a Penn State Particle Separator that had 3 screens (19, 8, and 1.18 mm) and a bottom pan, resulting in 4 fractions (long, medium, short, and fine). Sorting was calculated as the actual intake of each particle size fraction expressed as a percentage of the predicted intake of that fraction. Greater amounts of water added to the TMR resulted in greater increases in feed temperature in the hours after feed delivery, greater sorting against long particles, and decreased DMI, reducing the overall intake of starch and neutral detergent fiber. Milk production and composition were not affected by the addition of water to the TMR. Efficiency of production of milk was, however, increased with greater amounts of water added to the TMR. The increases in feed temperature in the hours after feed delivery were enhanced by higher ambient temperatures; this may be indicative of feed spoilage and thus may have contributed to the reduced DMI observed. Overall, these results suggest that the addition of water to high-moisture TMR (less than 60% DM) containing primarily haylage and silage forage sources will not always discourage cows from sorting, but rather may increase this behavior and limit the nutrient consumption of cows, particularly when ambient temperature is high.  相似文献   

7.
Effects of physical changes in consistency of ruminal contents on intraruminal equilibration and net portal fluxes of volatile fatty acids (VFA) in dairy cows were studied. Four Danish Holstein cows (121 ± 17 d in milk, 591 ± 24 kg of body weight, mean ± SD) surgically fitted with a ruminal cannula and permanent indwelling catheters in the major splanchnic blood vessels were used. The experimental design was a 4 × 4 Latin square with a 2 × 2 factorial design of treatments. Treatments differed in forage (grass hay) particle size (FPS; 3.0 and 30 mm) and feed dry matter (DM) content of the total mixed ration (44.3 and 53.8%). The feed DM did not affect chewing time, ruminal variables, or net portal flux of VFA. However, decreasing the FPS decreased the overall chewing and rumination times by 151 ± 55 and 135 ± 29 min/d, respectively. No effect of the reduced chewing time was observed on ruminal pH or milk fat percentage. Cows maintained average ventral ruminal pH of 6.65 ± 0.02, medial ruminal pH of 5.95 ± 0.04, and milk fat of 4.42 ± 0.12% with chewing time of 28.0 ± 2.1 min/kg of DM when fed short particles. The medial ruminal pool of wet particulate matter was decreased by 10.53 ± 2.29 kg with decreasing FPS, thereby decreasing the medial pool of total VFA, acetate, propionate, butyrate, isobutyrate, and isovalerate by 1,143 ± 333, 720 ± 205, 228 ± 69, 140 ± 51, 8.0 ± 2.3, and 25.2 ± 5.6 mmol, respectively. Ventral pool variables were not affected by treatments. Relatively large intraruminal differences of VFA concentrations and pH between the ventral and medial pools were observed, VFA concentrations being largest and pH being the lowest medially. This indicates that the ruminal mat acts as a barrier retaining VFA. The effects of reduced FPS were limited to the VFA pool sizes of the mat, leaving ruminal pH, ruminal VFA concentrations, and net portal flux of VFA unaffected. Consequently reduced FPS affected the intraruminal equilibration of VFA between mat and ventral rumen with an estimated turnover rate of isobutyrate increasing from 50 ± 3%/h with long particles to 61 ± 3%/h with short particles. The estimated ruminal fluid flow and therefore intraruminal VFA transport between medial and ventral phase was not affected by the FPS. In conclusion, the ruminal mat pool of VFA was proportional to the size of the mat and the only detected effects of decreasing FPS were decreasing the mat size and an increasing turnover of the mat pool of VFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号