首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study characterized the coagulation properties and defined the cutting window (CW; time between storage modulus values of 35 and 70 Pa) using rheometry for milk standardized to 4, 5, or 6% protein and set at 28, 32, or 36°C. Milks were standardized to a protein-to-fat ratio of approximately 1 by blending ultrafiltration retentate, skim milk, and whole milk. The internal curd microstructure for selected curd samples was analyzed with transmission electron microscopy and scanning electron microscopy. Lowering the coagulation temperature caused longer rennet coagulation time and time to reach storage modulus of 35 Pa, translating into a wider CW. It also led to a lower maximum curd-firming rate (MCFR) with lower firmness at 40 min at a given protein level. Increasing protein levels resulted in the opposite effect, although without an effect on rennet coagulation time at a given temperature. On coagulation at 28°C, milk with 5% protein resulted in a similar MCFR (~4 Pa/min) and CW (~8.25 min) compared with milk with 4% protein at 32°C, which reflects more standard conditions, whereas increasing milk to 6% protein resulted in more than doubling of the curd-firming rate (MCFR = 9.20 Pa/min) and a shorter CW (4.60 min). Gels set at 28°C had lower levels of rearrangement of protein network after 40 min compared with those set at 36°C. Protein levels, on the other hand, had no influence on the levels of protein network rearrangement, as indicated by loss tangent values. The internal structure of curd particles, as investigated by both scanning electron microscopy and transmission electron microscopy, appeared to have less cross-linking and smaller casein aggregates when coagulated at 28°C compared with 36°C, whereas varying protein levels did not show a marked effect on aggregate formation. Overall, this study showed a marked interactive effect between coagulation temperature and protein standardization of milk on coagulation properties, which subsequently requires adjustment of the CW during cheesemaking. Lowering of the coagulation temperature greatly altered the curd microstructure, with a tendency for less syneresis during cutting. Further research is required to quantify the changes in syneresis and in fat and protein losses to whey due to changes in the microstructure of curd particles arising from the different coagulation conditions applied to the protein-fortified milk.  相似文献   

2.
An online visible-near-infrared sensor was used to monitor the course of syneresis during cheesemaking with the purpose of validating syneresis indices obtained using partial least squares, with cross-validation across a range of milk fat levels, gel firmness levels at cutting, curd cutting programs, stirring speeds, milk protein levels, and fat:protein ratio levels. Three series of trials were carried out in an 11-L cheese vat using recombined whole milk. Three factorial experimental designs were used, consisting of 1) 3 curd stirring speeds and 3 cutting programs; 2) 3 milk fat levels and 3 gel firmness levels at cutting; and 3) 2 milk protein levels and 3 fat:protein ratio levels, respectively. Milk was clotted under constant conditions in all experiments and the gel was cut according to the respective experimental design. Prediction models for production of whey and whey fat losses were developed in 2 of the experiments and validated in the other experiment. The best models gave standard error of prediction values of 6.6 g/100 g for yield of whey and 0.05 g/100 g for fat in whey, as compared with 4.4 and 0.013 g/100 g, respectively, for the calibration data sets. Robust models developed for predicting yield of whey and whey fat losses using a validation method have potential application in the cheese industry.  相似文献   

3.
Coagulation of milk is one of the most important steps in cheese manufacture. Cutting the coagulum at optimum firmness is important to optimise the yield and quality of the cheese produced. The aim of this study was to investigate a prototype sensor to monitor rennet-induced coagulation of skim milk at different protein concentrations (3.3%, 4.0% and 4.7%) and to develop a model to predict the coagulum cutting time at a desired storage modulus (G′). Fluorescence and infrared backscatter profiles were recorded at wavelengths of 350 and 880 nm, respectively. Rheological measurements were used as a reference method to determine the times required for the coagulum to reach G′ values of 0.5, 5 and 20 Pa. Time parameters extracted from the optical profiles generated during the coagulation process were used to develop a model to predict the cutting time at which the coagulum reaches selected G′ values. This study demonstrated that the investigated prototype sensor, combined with the developed prediction model, can be used as an in-line PAT tool for real-time monitoring of milk coagulation and prediction of cutting time in cheese manufacturing.  相似文献   

4.
Cheese yield is strongly influenced by the composition of milk, especially fat and protein contents, and by the efficiency of the recovery of each milk component in the curd. The real effect of milk composition on cheesemaking ability of goat milk is still unknown. The aims of this study were to quantify the effects of milk composition; namely, fat, protein, and casein contents, on milk nutrient recovery in the curd, cheese yield, and average daily yield. Individual milk samples were collected from 560 goats of 6 different breeds. Each sample was analyzed in duplicate using the 9-laboratory milk cheesemaking assessment, a laboratory method that mimicked cheesemaking procedures, with milk heating, rennet addition, coagulation, curd cutting, and draining. Data were submitted to statistical analysis; results showed that the increase of milk fat content was associated with a large improvement of cheese yield because of the higher recovery of all milk nutrients in the curd, and thus a higher individual daily cheese yield. The increase of milk protein content affected the recovery of fat, total solids, and energy in the curd. Casein number, calculated as casein-to-protein ratio, did not affect protein recovery but strongly influenced the recovery of fat, showing a curvilinear pattern and the most favorable data for the intermediate values of casein number. In conclusion, increased fat and protein contents in the milk had an effect on cheese yield not only for the greater quantity of nutrients available but also for the improved efficiency of the recovery in the curd of all nutrients. These results are useful to improve knowledge on cheesemaking processes in the caprine dairy industry.  相似文献   

5.
Milk coagulation and acidity traits are important factors to inform the cheesemaking process. Those traits have been deeply studied in bovine milk, whereas scarce information is available for buffalo milk. However, the dairy industry is interested in a method to determine milk coagulation and acidity features quickly and in a cost-effective manner, which could be provided by Fourier-transform mid-infrared (FT-MIR) spectroscopy. The aim of this study was to evaluate the potential of FT-MIR to predict coagulation and acidity traits of Mediterranean buffalo milk. A total of 654 records from 36 herds located in central Italy with information on milk yield, somatic cell score, milk chemical composition, milk acidity [pH, titratable acidity (TA)], and milk coagulation properties (rennet coagulation time, curd firming time, and curd firmness) were available for statistical analysis. Reference measures of milk acidity and coagulation properties were matched with milk spectral information, and FT-MIR prediction models were built using partial least squares regression. The data set was divided into a calibration set (75%) and a validation set (25%). The capacity of FT-MIR spectroscopy to correctly classify milk samples based on their renneting ability was evaluated by a canonical discriminant analysis. Average values for milk coagulation traits were 13.32 min, 3.24 min, and 39.27 mm for rennet coagulation time, curd firming time, and curd firmness, respectively. Milk acidity traits averaged 6.66 (pH) and 7.22 Soxhlet-Henkel degrees/100 mL (TA). All milk coagulation and acidity traits, except for pH, had high variability (17 to 46%). Prediction models of coagulation traits were moderately to scarcely accurate, whereas the coefficients of determination of external validation were 0.76 and 0.66 for pH and TA, respectively. Canonical discriminant analysis indicated that information on milk coagulating ability is present in the MIR spectra, and the model correctly classified as noncoagulating the 91.57 and 67.86% of milk samples in the calibration and validation sets, respectively. In conclusion, our results can be relevant to the dairy industry to classify buffalo milk samples before processing.  相似文献   

6.
《Journal of dairy science》2022,105(8):6724-6738
At the global level, the quantity of goat milk produced and its gross production value have increased considerably over the last 2 decades. Although many scientific papers on this topic have been published, few studies have been carried out on bulk goat milk samples. The aim of the present study was to investigate in the field the effects of farming system, breed type, individual flock, and stage of production on the composition, coagulation properties (MCP), curd firming over time parameters (CFt), predicted cheese yield (CY%), and nutrient recovery traits (REC) of 432 bulk milk samples from 161 commercial goat farms in Sardinia, Italy. We found that the variance due to individual flock was of the same order as the residual variance for almost all composition and cheesemaking traits. With regard to the fixed effects, the effect of farming system on bulk milk variability was not highly significant for the majority of traits (it was lower than individual flock), whereas the effects of breed type and stage of production were much higher. More specifically, the intensive farms produced milk with the best concentrations of almost all constituents, whereas extensive farms exhibited faster rennet coagulation times, a slower rate of curd firming, lower potential curd firmness, and lower percentages of fat and energy recoveries in the fresh curd. Farms rearing the local breed, Sarda, alone or together with the Maltese breed, produced milk with the best concentrations of fat and protein, superior curd firmness, and better predicted percentage of fresh curd (CYCURD) and recovery traits. The results show the potential of both types of breed, either for their quantitative (specialized breeds) or their qualitative (local breeds) attributes. As expected, the concentrations of fat, protein fractions, and lactose were influenced by the stage of production, with samples collected in the early stage of production (in February and March) having a greater quantity of the main constituents. Somatic cells reached the highest levels in the late stage of production, which corresponds to the goats' advanced stage of lactation (June–July), although no differences were present in the logarithmic bacterial counts between the early and late stages. Regarding cheesemaking potential, bulk milk samples of the late stage were characterized by delayed rennet coagulation and curd firming times, the lowest values of curd firmness, and a general reduction in CY%, and REC traits. In conclusion, we highlight several issues regarding the effects of the most important sources of variation on bulk goat milk, and point to some critical factors relevant for improving dairy goat farming and milk production.  相似文献   

7.
Recombined whole milk was renneted under constant conditions of pH, temperature, and added calcium, and the gel was cut at a constant firmness. The effects of cutting and stirring on syneresis and curd losses to whey were investigated during cheese making using a factorial design with 3 cutting modes designed to provide 3 different cutting intensity levels (i.e., total cutting revolutions), 3 levels of stirring speed, and 3 replications. These cutting intensities and stirring speeds were selected to give a wide range of curd grain sizes and curd shattering, respectively. Both factors affected curd losses, and correct selection of these factors is important in the cheesemaking industry. Decreased cutting intensity and increased stirring speed significantly increased the losses of fines and fat from the curd to the whey. Cutting intensities and stirring speeds in this study did not show significant effects on curd moisture content over the course of syneresis. Levels of total solids, fines, and fat in whey were shown to change significantly during syneresis. It is believed that larger curd particles resulting from low cutting intensities coupled with faster stirring speeds resulted in a higher degree of curd shattering during stirring, which caused significant curd losses.  相似文献   

8.
A new instrument for the measurement of cheese curd rigidity is described. The instrument assesses rigidity by measuring the ability of the curd to transmit a compression wave. A diaphragm moves through a displacement of 0.5 mm at a frequency of 0.02 Hz, and the transmitted wave is received through a curd thickness of 8 mm by a sensitive pressure transducer. A continuous record of curd development is displayed on a recorder chart. Preliminary trials in commercial cheesemaking are described which show that the instrument is capable of monitoring the progress of curd development and allows the effect of cheesemaking variables on the maximum rate of firming and firmness at cutting time to be measured.  相似文献   

9.
《Journal of dairy science》2019,102(6):4989-5004
The effects of the independent variables protein concentration (4–6%), coagulum cut size (6–18 mm3), and coagulation temperature (28–36°C) on curd moisture loss during in-vat stirring were investigated using response surface methodology. Milk (14 kg) in a cheese vat was rennet coagulated, cut, and stirred as per semihard cheesemaking conditions. During stirring, the moisture content of curd samples was determined every 10 min between 5 and 115 min after cutting. The moisture loss kinetics of curds cut to 6 mm3 followed a logarithmic trend, but the moisture loss of curds from larger cut sizes, 12 or 18 mm3, showed a linear trend. Response surface modeling showed that curd moisture level was positively correlated with cut size and negatively correlated with milk protein level. However, coagulation temperature had a significant negative effect on curd moisture up to 45 min of stirring but not after 55 min (i.e., after cooking). It was shown that curds set at the lower temperature had a slower syneresis rate during the initial stirring compared with curds set at a higher temperature, which could be accelerated by reducing the cut size. This study shows that keeping a fixed cut size at increasing protein concentration decreased the level of curd moisture at a given time during stirring. Therefore, to obtain a uniform curd moisture content at a given stirring time at increasing protein levels, an increased coagulum cut size is required. It was also clear that breakage of the larger curd particles during initial stirring can also significantly influence the curd moisture loss kinetics. Both transmission and scanning electron micrographs of cooked curds (i.e., after 45 min of stirring) showed that the casein micelles were fused at a higher degree in curds coagulated at 36°C compared with 28°C, which confirmed that coagulation temperature causes a marked change in curd microstructure during the earlier stages of stirring. The present study showed the dynamics of curd moisture content during stirring when using protein-concentrated milk at various set temperatures and cut sizes. This provides the basis for achieving a desired curd moisture loss during cheese manufacture using protein-concentrated milk as a means of reducing the effect of seasonal variation in milk for cheesemaking.  相似文献   

10.
The coagulation of renneted skim milks was monitored by dynamic measurement of elastic shear modulus (G) based on low amplitude oscillation. Four alternative time-dependency models were fitted to the measurements and compared with respect to their ability to describe the development of curd firmness and their usefulness in deriving parameters of practical interest in cheesemaking.
All models described the development of G over the course of the experimental time-scale (≈ 60 min), with the Scott-Blair and Carlson models following the experimental course of G more accurately than the other models. The fit of the Douillard model was consistent with a systematic error in the region of onset of gelation, owing to its nonsigmoidal nature. The fit of the linearized Scott Blair model was poor at the upper end of the experimental range of G.
Apart from gel time as defined by G = 0.2 Pa, there was no significant difference between the Carlson and Scott Blair models in simulating most coagulation parameters, including set-to-cut time, firmness at 2.4 ks, rate of curd firming and time of maximum curd firming rate.
Where significant differences occurred between the Carlson and Scott Blair models, on one hand, and either the Douillard or linearized Scott Blair model on the other, as for set-to-cut time, the mean deviations from experimental data were smaller when using the former models.  相似文献   

11.
This study evaluated the effect of storage on renneting properties of goat milk investigated using the Formagraph method. Milk samples from 169 goats in three farms (F1, F2 and F3) were analysed during an entire lactation (45, 75, 105, 135 and 165 days in milking DIM), to obtain renneting parameters, both from fresh milk and after storage with Bronopol and freezing at -20°C and -80°C. As regards fresh milk, mean values of clotting time were between 12·51 (45 DIM) and 13·29 min (105 DIM and F2), the curd firming time between 1·77 (45 DIM) and 2·15 min (F1) and curd firmness between 42·09 (165 DIM) and 49·55 mm (45 DIM). No statistical difference was recorded after storage. After regression analysis, all prediction models showed significance value at P<0·001 with the highest R2 value for clotting time, 0·710 (fresh vs. frozen milk at -20°C), and the lowest for clot firmness, 0·281 (fresh vs. frozen milk at -80°C). Results demonstrated that assessment of goat milk coagulation properties using the Formagraph method is also achievable after freezing or Bronopol addition.  相似文献   

12.
Traditional milk coagulation properties are used to predict the suitability of milk for cheese-making. In bovine and ovine species, the introduction of the concept of curd firming over time, continuously recorded by a lactodynamograph during prolonged tests, provides additional information about milk coagulation, curd-firming, and syneresis processes. The aims of present study were (1) to test the adaptability of a 4-parameter curd-firming model in the assessment of goat milk (also comparing published data of other species); (2) to describe variability of coagulation, curd firming, and syneresis processes among individual goat milk samples; (3) to quantify the effects of farm and animal factors (breed, parity, and stage of lactation); and (4) to compare 6 goat breeds for their model parameters. Milk samples from 1,272 goats reared in 35 farms were collected. Goats were of 6 breeds: Saanen and Camosciata delle Alpi for the Alpine type; and Murciano-Granadina, Maltese, Sarda, and Sarda Primitiva for the Mediterranean type. During a lactodynamographic analysis (60 min), 240 measures of curd firmness (mm) were recorded for each milk sample. The modeling of curd firming allowed us to achieve the rennet coagulation time estimated on the basis of all the data points (min); the curd firming and the curd syneresis instant rate constants; the asymptotical potential value of curd firming; the actual maximum curd firmness; and the time at which the curd firming maximum level is attained. Modeling parameter data were analyzed using a linear mixed model. Comparison with other dairy species showed several differences: goat milk coagulated later than sheep but earlier than bovine, and curd firming and curd syneresis instant rate constants were greater in small ruminants. Modeling parameters of goat milk were mostly affected by the farm effect (37% of the total variance, on average) compared with the results found for bovine and ovine samples, and this was probably attributable to the marked differences among goat farming systems. Small differences were demonstrated between Alpine and Mediterranean breeds, but the time of maximum curd firmness was lower in Murciano-Granadina compared with Maltese, Sarda, and Sarda Primitiva. Sarda and Sarda Primitiva were very similar and exhibited the most favorable coagulation properties of milk. For almost all the model parameters, the direct effect of breed was increased after correction for milk yield and composition. In conclusion, this approach allowed us to fully depict the effects of the different factors on coagulation of goat milk, and clarified the different renneting pattern among goat breeds, and with other species. Results could be used for the valorization of goat dairy products, also when these are linked to particular local breeds, and to stimulate further studies about relationships between coagulation and cheese-making traits.  相似文献   

13.
This study compared the effect of coagulum firmness at cutting on composition of 50% reduced-fat Cheddar cheese. Coagulum firmness was determined by subjective evaluation by the cheese maker. Three firmness levels were tested, and these corresponded to average times of coagulant addition to cutting the curd of 25, 48, and 65 min. A slow acid-producing culture was used, and ripening times were altered to give similar curd pH values throughout cheese making. A longer rennet coagulation time (firmer coagulum at cutting) resulted in an increase in cheese moisture as well as an increase in cheese yield. The percentages of fat recovered in the cheese decreased with increasing curd firmness. The percentage of nitrogen recovered in the cheese was similar among the treatments. The amount of whey collected from the curd after milling increased as the coagulum firmness at cutting increased. Higher moisture content and lower pH of cheese made from the firmer curd at cutting contributed to softer, smoother-bodied cheeses, but the Cheddar flavor intensity was not affected.  相似文献   

14.
《Journal of dairy science》2023,106(4):2314-2325
The effects of high hydrostatic pressure on the constituents and coagulation ability and their effect on cheese production of sheep milk have not been studied in detail. The objective of this work was to evaluate the effect of high hydrostatic pressure processing on the coagulation kinetics and physicochemical properties of sheep milk and to explore how such treatment could improve the cheesemaking process. Five batches of milk were tested: 1 untreated control batch and 4 batches each subjected to a different pressure (150, 300, 450, or 600 MPa) for 5 min at 10°C. As treatment pressure increased, values of electrical conductivity and oxidation-reduction potential were found to decrease. However, no significant reduction in pH was recorded. Treatment pressures >300 MPa produced milk with lower lightness (luminosity) and a more yellow and green hue. Pressures >150 MPa resulted in micellar fragmentation, as well as significant increases in particle size, viscosity, and water-holding capacity as a consequence of the denaturing of soluble proteins. High-pressure treatments increased the solubility of colloidal calcium phosphate, leading to a considerable increase in the concentration of minerals in the serum phase. The highest concentrations of calcium and phosphorus in the rennet whey of milk were reached at 300 MPa. Curd coagulation time was reduced by 28% at pressures >300 MPa, and an increase in the curd firming rate was observed. As treatment pressure increased to 450 MPa, the firmness, elasticity, and the percentage creep recovery of gels increased, whereas values of compliance and fracture strain were reduced. Thus, we can conclude that 300 MPa is the optimum treatment pressure for milk intended for cheesemaking by enzymatic coagulation. This pressure produced milk with optimal coagulation kinetics and water-holding properties with the least loss of fat and protein to the whey.  相似文献   

15.
Sheep milk is mainly transformed into cheese; thus, the dairy industry seeks more rapid and cost-effective methods of analysis to determine milk coagulation and acidity traits. This study aimed to assess the feasibility of Fourier-transform mid-infrared spectroscopy to determine milk coagulation and acidity traits of sheep bulk milk and to classify milk samples according to their renneting capacity. A total of 465 bulk milk samples collected in 140 single-breed flocks of Comisana (84 samples, 24 flocks) and Sarda (381 samples, 116 flocks) breeds located in Central Italy were analyzed for coagulation properties (rennet coagulation time, curd firming time, and curd firmness) and acidity traits (pH and titratable acidity) using standard laboratory procedures. Fourier-transform mid-infrared spectroscopy prediction models for these traits were built using partial least squares regression analysis and were externally validated by randomly dividing the full data set into a calibration set (75%) and a validation set (25%). The discriminant capacity of the rennet coagulation time prediction model was determined using partial least squares discriminant analysis. Prediction models were more accurate for acidity traits than for milk coagulation properties, and the ratio of prediction to deviation ranged from 1.01 (curd firmness) to 2.14 (pH). Moreover, the discriminant analysis led to an overall accuracy of 74 and 66% for the calibration and validation sets, respectively, with greater sensitivity for samples that coagulated between 10 and 20 min and greater specificity to detect early-coagulating (<10 min) and late-coagulating (20–30 min) samples. Results suggest that Fourier-transform mid-infrared spectroscopy has the potential to help the dairy sheep industry identify milk with better coagulation ability for cheese production and thus improve milk transformation efficiency. However, further research is needed before this information can be exploited at the industry level.  相似文献   

16.
The effects of various processing parameters on the rennet coagulation properties of milk were assessed. Using low amplitude oscillation rheometry, the coagulation properties were monitored by measurement of the elastic shear modulus, G', as a function of time, t, from rennet addition; Gapos; was taken as a measure of curd firmness. The Scott-Blair time dependency model was fitted to the experimental G' It curves for the determination of the following coagulation parameters: gel time, maximum curd firming rate, the set-to-cut time at 20 Pa (ie, time to reach 20 Pa) and the curd firmness after a renneting time of 2400 s. The renneting properties were enhanced by increasing the levels of milk protein and fat in the ranges 0.3–7.0% (w/w) and 0.1–10% (w/w) respectively and by two stage homogenization pressure where the first stage pressure, P1, was varied from 0 to 25 MPa and the second stage pressure, P2, was held constant at 5 MP a. The influence of these parameters, within the range investigated, in complementing the gel forming properties decreased in the following order: protein > fat > homogenization pressure. In contrast, the coagulation properties of milk were impaired by high heat treatment, the addition of a commercial microparticulated whey protein based fat substitute and by partial replacement of protein with fat.  相似文献   

17.
The genetic parameters were estimated for milk coagulation properties and milk production traits, and the prevalence of noncoagulating milk in the Finnish dairy cattle population was investigated. Data were included for 789 Finnish Ayrshire cows and 86 Finnish Friesian cows from 51 herds. The animal model used for estimation included fixed effects for parity, stage of lactation, breed, and herd. Further, effects of milk protein genotypes on phenotypic and genetic variation in the studied traits were examined. Heritability estimates for the milk coagulation properties were moderately high. The kappa-casein B allele was associated with the best phenotypic and genetic values for curd firmness, and the A and E alleles were associated with the poorest. About 24% of the additive genetic variation in the curd firmness was due to milk protein polymorphism. About 8% of the Finnish Ayrshire cows in the present study produced noncoagulating milk. Because of the occurrence of the noncoagulating milk and a possibly unfavorable genetic trend in the milk coagulation properties, it would be important to improve these traits in the Finnish Ayrshire breed. Milk coagulation properties could be improved directly by selecting for these traits or indirectly by favoring the kappa-casein B allele or by selecting against genetic markers associated with poorly coagulating or noncoagulating milk.  相似文献   

18.
The use of reverse osmosis (RO) for cheese milk concentration has advantages including obtaining reusable low pollutant permeates and reducing milk transportation costs. However, high levels of lactose and salts in RO concentrates impair their cheesemaking abilities. The objective of this work was to optimise the use of RO concentrates (5–11% protein content) for cheesemaking by pH adjustment. Rennet coagulation kinetics, salt partitioning and cheesemaking properties were studied in comparison with ultrafiltration concentrates. Results showed that concentration by RO induced an increase regarding the coagulation time and the gel maximal firming rate that reached a plateau at 9% protein content. Increases in calcium mineralisation of casein micelles as well as in yield, moisture and lactose content in model cheese were observed. Lowering renneting pH was found to improve the cheesemaking properties of RO concentrates by promoting partial demineralisation of casein micelles, accelerating coagulation kinetics and increasing curd drainage.  相似文献   

19.
Characteristics of sheep milk are of great interest for the dairy industry, as almost the totality of production is intended for cheesemaking. However, the existing relationships between these variables are complex. This study assessed composition, hygienic quality, coagulation properties, and curd yield of 1,200 individual Manchega sheep milk samples. The aim was to compare the effect of composition and hygienic quality on coagulation and curdling, and to evaluate the relationship between curd yields and the coagulation process and the effect of other features by using path analysis methodologies. Outcomes proved path analysis to be a useful and effective tool to assess these relationships through direct and indirect paths within the same model. Results showed that the factors that had a direct influence on milk coagulation were lactose concentration, casein content, and initial pH of milk. Contrastingly, somatic cells did not seem to have any effect (direct or indirect) on the coagulation process. Factors that directly affected curd yield were fat content, lactose concentration, casein content, and curd moisture. However, technological parameters showed little effect over curd yield.  相似文献   

20.
The enhancement of milk coagulation properties (MCP) and the reuse of whey produced by the dairy industry are of great interest to improve the efficiency of the cheese-making process. Native whey proteins (WP) can be aggregated and denatured to obtain colloidal microparticulated WP (MWP). The objective of this study was to assess the effect of MWP on MCP; namely, rennet coagulation time (RCT), curd-firming time, and curd firmness 30 min after rennet addition. Six concentrations of MWP (vol/vol; 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0%) were added to 3 bulk milk samples (collected and analyzed during 3 d), and a sample without MWP was used as control. Within each day of analysis, 6 replicates of MCP for each treatment were obtained, changing the position of the treatment in the rack. For control samples, 2 replicates per day were performed. In addition to MCP, WP fractions were measured on each treatment during the 3 d of analysis. Milk coagulation properties were measured on 144 samples by using a Formagraph (Foss Electric, Hillerød, Denmark). Increasing the amount of MWP added to milk led to a longer RCT. In particular, significant differences were found between RCT of the control samples (13.5 min) and RCT of samples with 3.0% (14.6 min) or more MWP. A similar trend was observed for curd-firming time, which was shortest in the control samples and longest in samples with 9.0% MWP (21.4 min). No significant differences were detected for curd firmness at 30 min across concentrations of MWP. Adjustments in cheese processing should be made when recycling MWP, in particular during the coagulation process, by prolonging the time of rennet activity before cutting the curd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号