首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silage review: Recent advances and future technologies for baled silages   总被引:1,自引:0,他引:1  
Although the concept of ensiling large-round or large-square bales dates back to the late 1970s, many refinements have been made to both equipment and management since that time, resulting in much greater acceptance by small or mid-sized dairy or beef producers. This silage preservation technique is attractive to producers for several reasons, but the primary advantage is a reduced risk of weather damage to valuable forage crops compared with preservation as dry hay. Most core principles for making high-quality precision-chopped silages also apply to baled silages; among these, establishing and subsequently maintaining anaerobiosis are priorities. For baled silages, these priorities are critical, in part because recommended moisture concentrations (45 to 55%) are drier, and particle length is much longer. These factors act to restrict the rate and extent of silage fermentation, often resulting in less production of desirable fermentation acids and a greater (less acidic) final pH. Within this context, preservation of baled silages can be improved by applying polyethylene (PE) film wraps promptly, using an appropriate number of PE film layers (6 to 8), selecting a storage site free of sharp objects or other debris, and by monitoring wrapped bales closely for evidence of puncture, particularly by birds or vermin. Under certain conditions, such as those in which the bale moisture of highly buffered forages exceeds the recommended range, the heterogeneous nature of baled silages coupled with a restricted rate and extent of fermentation may increase susceptibility to clostridial activity compared with precision-chopped forages ensiled at comparable moisture concentrations. To date, research evaluating inoculants or other additives designed to improve the fermentation of challenging forages or aerobic stability has been limited, but should not be discontinued. Development of PE film embedded with an oxygen-limiting barrier has yielded positive results in some trials; however, most differences between these novel formulations and reputable commercial PE film have been related to decreases in yeast and mold counts at the surface layer. Related assessments of fermentation or nutritive value determined on a whole-bale basis have been less conclusive. Baled silages can be produced successfully by adhering to straightforward management principles; as such, this form of silage production is likely to remain popular for the foreseeable future.  相似文献   

2.
Silage review: Recent advances and future uses of silage additives   总被引:3,自引:0,他引:3  
Additives have been available for enhancing silage preservation for decades. This review covers research studies published since 2000 that have investigated the efficacy of silage additives. The review has been divided into 6 categories of additives: homofermentative lactic acid bacteria (LAB), obligate heterofermentative LAB, combination inoculants containing obligate heterofermentative LAB plus homofermentative LAB, other inoculants, chemicals, and enzymes. The homofermentative LAB rapidly decrease pH and increase lactic acid relative to other fermentation products, although a meta-analysis indicated no reduction in pH in corn, sorghum, and sugarcane silages relative to untreated silages. These additives resulted in higher milk production according to the meta-analysis by mechanisms that are still unclear. Lactobacillus buchneri is the dominant species used in obligate heterofermentative LAB silage additives. It slowly converts lactic acid to acetic acid and 1,2-propanediol during silo storage, improving aerobic stability while having no effect on animal productivity. Current research is focused on finding other species in the Lb. buchneri group capable of producing more rapid improvements in aerobic stability. Combination inoculants aim to provide the aerobic stability benefits of Lb. buchneri with the silage fermentation efficiency and animal productivity benefits of homofermentative LAB. Research indicates that these products are improving aerobic stability, but feeding studies are not yet sufficient to make conclusions about effects on animal performance. Novel non-LAB species have been studied as potential silage inoculants. Streptococcus bovis is a potential starter species within a homofermentative LAB inoculant. Propionibacterium and Bacillus species offer improved aerobic stability in some cases. Some yeast research has focused on inhibiting molds and other detrimental silage microorganisms, whereas other yeast research suggests that it may be possible to apply a direct-fed microbial strain at ensiling, have it survive ensiling, and multiply during feed out. Chemical additives traditionally have fallen in 2 groups. Formic acid causes direct acidification, suppressing clostridia and other undesired bacteria and improving protein preservation during ensiling. On the other hand, sorbic, benzoic, propionic, and acetic acids improve silage aerobic stability at feed out through direct inhibition of yeasts and molds. Current research has focused on various combinations of these chemicals to improve both aerobic stability and animal productivity. Enzyme additives have been added to forage primarily to breakdown plant cell walls at ensiling to improve silage fermentation by providing sugars for the LAB and to enhance the nutritive value of silage by increasing the digestibility of cell walls. Cellulase or hemicellulase mixtures have been more successful at the former than the latter. A new approach focused on Lb. buchneri producing ferulic acid esterase has also had mixed success in improving the efficiency of silage digestion. Another new enzyme approach is the application of proteases to corn silage to improve starch digestibility, but more research is needed to determine the feasibility. Future silage additives are expected to directly inhibit clostridia and other detrimental microorganisms, mitigate high mycotoxin levels on harvested forages during ensiling, enhance aerobic stability, improve cell wall digestibility, increase the efficiency of utilization of silage nitrogen by cattle, and increase the availability of starch to cattle.  相似文献   

3.
Forty Holstein cows were used in an 8-wk randomized block design trial to determine the effects of theoretical length of cut (TLC) and kernel processing (KP) of whole plant corn silage on nutrient intake and digestibility, milk yield, and milk composition. Corn was harvested at three-quarters milk line stage of maturity at TLC of 1.90 or 2.54 cm. At each TLC, corn was KP at either 2 or 8 mm roll clearance. The control was harvested at 1.90 cm without KP. Corn silage provided 38% of the dietary dry matter (DM) in the experimental diets. Intake of DM and nutrients was similar among treatments. Apparent digestibility of DM and acid detergent fiber (ADF) increased with increasing TLC. Fiber digestibility was improved by KP compared with unprocessed corn silage. Starch digestibility was greater for corn silage KP at 2 vs. 8 mm. Apparent digestibility of DM, crude protein, and ADF was lowest for the diet containing silage harvested at 2.54 cm TLC and KP at 8 mm, resulting in an interaction of TLC and KP. No differences were observed in DM intake (DMI) among treatments. An interaction of TLC and KP was observed, however, for yield of milk protein and energy-corrected milk (ECM) and efficiency of converting DMI to ECM because of lower yield for diets containing silage harvested at 2.54 cm TLC and KP at 8 mm. Results of this trial indicate that as TLC increases, aggressive KP is necessary to maintain nutrient digestibility and performance of lactating dairy cows.  相似文献   

4.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

5.
Forty-eight mid-lactation Holstein cows were used in a 6-wk completely randomized block design trial with a 4 × 3 factorial arrangement of treatments to determine the effects of feeding different proportions of corn silage and ryegrass silage with supplemental ground corn (GC), steam-flaked corn (SFC), and hominy feed (HF) on the performance of lactating dairy cows. Forage provided 49% of the dietary dry matter in the experimental diets, which were formulated to meet National Research Council requirements. Ryegrass silage provided 100, 75, 50, or 25% of the total forage dry matter, with corn silage supplying the remainder. There were no interactions between the proportion of forage provided by ryegrass silage and energy supplement. Dry matter intake and milk protein percentage decreased linearly with increasing proportions of ryegrass silage, but milk protein yield was similar among forage treatments. There were no differences among forage treatments in milk yield, milk fat percentage and yield, and energy-corrected milk yield. Dry matter intake was higher and there was a tendency for increased milk fat percentage for GC compared with SFC or HF. No other differences were observed in milk yield or composition among energy supplements. Plasma urea nitrogen and glucose concentrations were similar among treatments. Under the conditions of this trial, our results indicate that feeding a combination of corn silage and ryegrass silage is more desirable than feeding ryegrass silage alone, whereas supplementation with GC, SFC, or HF supports similar levels of milk production.  相似文献   

6.
The objectives of this experiment were to study the effects of corn hybrid and chop length of whole-plant corn silage (WPCS) on intake, and to quantify ruminal digestive processes that could help to identify factors limiting dry matter intake (DMI). Eight lactating cows and 4 dry cows fitted with a ruminal cannula were randomly assigned to 4 treatments in a 4 x 4 Latin square design with replications for lactating cows and without for ruminally cannulated cows. Treatments were fed in a total mixed ration (TMR) containing 75% WPCS and 25% concentrate. The 4 WPCS differed in the characteristics of 2 conventional hybrids, less degradable vs. more degradable in the rumen and in the chop length, fine vs. coarse. The DMI was measured for all cows, and digestion measurements and chewing activities were recorded with the cannulated cows. With lactating cows, DMI and milk yield varied with corn hybrids but not with chop length. The less degradable hybrid in the rumen was the less ingested. Dry matter intake of dry ears followed the same trend, but the differences between hybrids were lower than that observed with the lactating cows and not significant. Dry matter digestibility in the total tract and rumen fill were not different between hybrids. Ruminal mean retention time was greater for the least degradable hybrid. The rumen fill capacity could explain intake differences between hybrids. Ingestive mastication strongly reduced particle size, and the efficiency of particle size reduction was more important with the coarsely chopped WPCS than the finely chopped ones. The small differences in particle size of material entering the rumen after mastication of WPCS during eating might explain the lack of response for decreasing chop length. Because the rumen fill decreased with the decrease in chop length, rumen fill could not be the only factor responsible for DMI control of WPCS.  相似文献   

7.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

8.
Eight intact multiparous cows and four ruminally and duodenally cannulated primiparous cows were fed four diets in a replicated 4 x 4 Latin square design: 1) 17% forage neutral detergent fiber (NDF) with brown midrib corn silage (BMRCS), 2) 21% forage NDF with BMRCS, 3) 17% forage NDF with conventional corn silage (CCS), and 4) 21% forage NDF with CCS. Diets contained 17.4% crude protein and 38.5% NDF. Each period consisted of 4 wk for intact cows and 2 wk for cannulated cows. For intact cows, DM intake was higher for BMRCS than CCS, and milk urea N was higher for 21 than 17% forage NDF. Milk protein yield tended to be higher and milk urea N lower for cows fed BMRCS than those fed CCS. Milk yield and milk protein percentage were similar among treatments. For the cannulated cows, ruminal mat consistency was similar among treatments. Based on a 72 h in situ incubation, BMRCS was lower in indigestible NDF than CCS. The BMRCS resulted in a higher proportion of ruminal propionate than CCS. Cows fed 21% forage NDF had a higher proportion of acetate and a lower proportion of propionate than cows fed 17% forage NDF. The total tract digestibility of nutrients and efficiency of bacterial N synthesis were similar among treatments, except that BMRCS resulted in lower intestinal fatty acid digestibility than CCS, and 17% forage NDF tended to result in higher total tract fatty acid digestibility than 21% forage NDF. Ruminal NDF digestibility was similar among dietary treatments. The increased milk production observed from feeding BMRCS in some studies may be explained by higher DM intake rather than increased total tract digestibility of the diets.  相似文献   

9.
We studied the effects of mechanical processing and type of hybrid on the nutritive value of corn silage for lactating cows. Treatments were brown midrib (BMR) corn silage that was unprocessed (U-BMR), BMR corn silage that was processed (P-BMR), and a conventional corn silage that was processed (P-7511). All silages were harvested at a theoretical chop length of 19 mm. The chemical compositions of the silages were similar among treatments except that BMR silages were lower in lignin and higher in protein than P-7511. Brown midrib silages had greater 30-h in situ and in vitro NDF digestion than did P-7511, and processing had no effect on 30-h in situ and in vitro fiber digestion, but it increased in situ starch digestion after 3 and 12 h of incubation. Both processed silages had a smaller proportion of particles >1.91 cm and fewer whole corn kernels compared with unprocessed silage. Lactating cows were fed a total mixed ration (TMR) consisting of 42% of each silage type, 40% concentrate, 10% alfalfa silage, and 8% alfalfa hay (DM basis). Cows fed TMR containing P-BMR ate more DM and produced more milk than cows fed P-7511. At feeding, the TMR containing U-BMR had a larger proportion of particles >1.91 cm when compared with the TMR of cows fed processed silages, and after 24 h the difference was even greater, indicating that cows fed unprocessed corn silage sorted more. Cows fed TMR with P-7511 and P-BMR had greater total tract digestibility of organic matter, crude protein, and starch compared with cows fed U-BMR. In vivo digestibility of neutral detergent fiber was greatest for cows fed P-BMR when compared with the other treatments.  相似文献   

10.
This experiment was conducted to determine the effect of crop processing and amino acid supplementation on dairy cow performance. Corn silage processed (PCS) or unprocessed (UCS) was used as the main forage (45% of dry matter, DM) in a total mixed ration (TMR). Each TMR was either supplemented (AA) or not (AAO) with ruminally protected amino acids (lysine, 3 g/d and methionine, 14 g/d). Thirty-two (551 kg) Holstein cows were randomly assigned to four treatments: PCS-AA, PCS-AA0, UCS-AA, and UCS-AA0 in a 2 x 2 factorial structure. Between wk 7 and 17 of lactation, cows were fed ad libitum TMR comprising 45% of corn silage plus 1 kg of grass hay once a day. The UCS presented better fermentation characteristics than PCS. Dry matter intake (DMI) of the TMR was not affected by treatment and averaged 22.7 kg/d. Energy-corrected milk (ECM) production was 9% higher with UCS than with PCS (33.1 vs. 30.1 kg/d). Milk efficiency was therefore 6% higher with UCS than with PCS (1.43 vs. 1.35 kg ECM/kg of DMI). The concentration of major milk constituents (fat, protein, lactose, urea) was not affected by treatments. Apparent digestibility of DM, organic matter, N, starch, acid detergent fiber, and neutral detergent fiber were similar among treatments. The effective ruminal degradability of DM, starch, and protein, however, was greater with PCS than with UCS. Amino acid supplementation had no effect on milk production nor on milk constituents, whether it was used with processed corn silage or with unprocessed corn silage. These data indicate that feeding UCS resulted in a greater milk production compared with PCS. The numerically higher DMI, a potentially greater intestinal digestion of starch or the better conservation of UCS could have contributed to the greater milk production.  相似文献   

11.
Silage is an important feed source for intensive dairy herds worldwide. Fungal growth and mycotoxin production before and during silage storage is a well-known phenomenon, resulting in reduced nutritional value and a possible risk factor for animal health. With this in mind, a survey was conducted to determine for the first time the occurrence of mycotoxins in corn and wheat silage in Israel. A total of 30 corn and wheat silage samples were collected from many sources and analysed using a multi-mycotoxin method based on LC-MS/MS. Most mycotoxins recorded in the present study have not been reported before in Israel. Overall, 23 mycotoxins were found in corn silage; while wheat silage showed a similar pattern of mycotoxin occurrence comprising 20 mycotoxins. The most common post-harvest mycotoxins produced by the Penicillium roqueforti complex were not found in any tested samples, indicative of high-quality preparation and use of silage. Moreover, none of the European Union-regulated mycotoxins – aflatoxin B1, ochratoxin, T-2 toxin, diacetoxyscirpenol and deoxynivalenol – were found above their limits of detection (LODs). The Alternaria mycotoxins – macrosporin, tentoxin and alternariol methyl ether – were highly prevalent in both corn and wheat silage (>80%), but at low concentrations. The most prominent (>80%) Fusarium mycotoxins in corn silage were fusaric acid, fumonisins, beauvericin, monilifomin, equisetin, zearalenone and enniatins, whereas in wheat silage only beauvericin, zearalenone and enniatins occurred in more than 80% of the samples. The high prevalence and concentration of fusaric acid (mean = 765 µg kg–1) in Israeli corn silage indicates that this may be the toxin of highest potential concern to dairy cow performance. However, more data from different harvest years and seasons are needed in order to establish a more precise evaluation of the mycotoxin burden in Israeli silage.  相似文献   

12.
Two in vitro experiments were performed to identify promising exogenous fibrolytic enzyme products (EFE) and optimum dose rates (DR) for improving the degradation of alfalfa hay and corn silage. The relationship between enzymatic activity and fermentation responses was examined to identify optimum formulations. In experiment 1, 5 EFE containing mainly endoglucanase and xylanase activities, with different ratios between the 2 activities, were assessed at a DR of 0.7, 1.4, and 2.1 mg/g of DM forage. Milled alfalfa hay or corn silage was incubated in an in vitro batch culture with buffer, ruminal fluid, and EFE. Gas production (GP) was measured during 24 h of incubation, and degradabilities of DM and fiber were measured after terminating the incubation at 24 h. Two (E1 and E3) EFE substantially improved GP and degradation of alfalfa hay and corn silage fiber. The optimum DR of these EFE was 1.4 mg/g of DM for both forages with improvements in NDF degradability up to 20.6% for alfalfa hay and up to 60.3% for corn silage. Whereas added activities of endoglucanase and exoglucanase were positively correlated with improvement in NDF degradability for alfalfa hay and corn silage, there was no relationship between added xylanase activity and NDF degradability. The 2 most promising EFE from experiment 1 were reevaluated in experiment 2, alone and in combination with a high xylanase EFE, to determine whether their effectiveness could be enhanced by decreasing the endoglucanase to xylanase ratio. The 2 EFE improved GP and fiber degradation in a manner similar to that observed in experiment 1, but the combination treatments resulted in no further beneficial effects. Exogenous fibrolytic enzyme products can greatly improve forage utilization, but DR and the activities supplied are critical for achieving this response. Products used with alfalfa hay and corn silage should contain high endoglucanase activity, with an ideal ratio of endoglucanse to xylanase.  相似文献   

13.
Silage-related injury knows no age boundary as workers and bystanders of all ages have been killed in silage accidents. Even the best employee can become frustrated with malfunctioning equipment and poor weather conditions and take a hazardous shortcut, or misjudge a situation and take a risky action. At least 6 hazards are encountered in managing silage in bunker silos and drive-over piles that endanger lives: tractor or truck rollover, run-over by or entanglement in machinery, fall from height, crushing by an avalanche or collapsing silage, silage gases, and complacency or fatigue. These hazards are presented in detail along with accounts of 14 individual case studies involving several of them. Guidelines that can dramatically reduce the risk of serious injuries or fatalities from each of the hazards are presented. Every farm, feedlot, dairy, and silage contractor should have written safety policies and procedures for their silage program, and they should schedule regular meetings with all their employees to discuss and demonstrate safety. The most important goal in every silage program is to send all employees home safely to their families at the end of the day.  相似文献   

14.
Silage may contain several agents that are potentially hazardous to animal health, the safety of milk or other animal food products, or both. This paper reviews published literature about microbial hazards, plant toxins, and chemical hazards. Microbial hazards include Clostridium botulinum, Bacillus cereus, Listeria monocytogenes, Shiga toxin-producing Escherichia coli, Mycobacterium bovis, and various mold species. High concentrations of C. botulinum in silage have been associated with cattle botulism. A high initial concentration of C. botulinum spores in forage in combination with poor silage fermentation conditions can promote the growth of C. botulinum in silage. The elevated pH level that is generally associated with aerobic deterioration of silage is a major factor influencing concentrations of L. monocytogenes, Shiga toxin-producing E. coli, and molds in silage and may also encourage survival and growth of M. bovis, the bacterium that causes bovine tuberculosis. Soil is a major source of B. cereus spores in silage; growth of this bacterium in silage appears to be limited. Hazards from plant toxins include pyrrolizidine, tropane and tropolone alkaloids, phytoestrogens, prussic acid, and mimosine, compounds that exist naturally in certain plant species that may contaminate forages at harvesting. Another group of toxins belonging to this category are ergot alkaloids, which are produced by endophytic fungal species in forages such as tall fescue grass, sorghum, and ryegrass. Varying effects of ensiling on the degradation of these plant toxins have been reported. Chemical hazards include nitrate, nitrite, and toxic oxide gases of nitrogen produced from nitrate and high levels of butyric acid, biogenic amines, and ammonia. Chemical and microbiological hazards are associated with poorly fermented silages, which can be avoided by using proper silage-making practices and creating conditions that promote a rapid and sufficient reduction of the silage pH and prevent aerobic deterioration.  相似文献   

15.
We studied the effect of increasing the cutting height of whole-plant corn at the time of harvest from 12.7 (NC) to 45.7 (HC) cm on yield and nutritive value of silage for dairy cows. Three leafy corn silage hybrids were harvested at NC and HC at about 34% dry matter (E) and 41% DM (L) and ensiled in laboratory silos. Increasing the height of cutting lowered yields of harvested DM/ha. In addition, the concentrations of DM and starch were higher but the concentrations of lactic acid, crude protein, neutral detergent fiber (NDF), and acid detergent fiber were lower in HC than in NC. The concentration of acid detergent lignin was also lower in HC, but only in corn harvested at E. In vitro digestion (30 h) of NDF was greater in HC (50.7%) than NC (48.3%). Calculated yield of milk per tonne of forage DM was greater for HC than for NC at E but not at L. In a lactation experiment, increasing the height of cutting of another leafy corn silage hybrid, TMF29400, in general also resulted in similar changes in nutrient composition as just described. When fed to lactating dairy cows, HC corn silage resulted in tendencies for greater NDF digestion in the total tract, higher milk production and improved feed efficiency, but there were no differences in 3.5% fat corrected milk between treatments. Results of this study suggest that increasing the cutting height of whole plant corn at harvest can improve the nutritive value of corn silage for lactating dairy cows.  相似文献   

16.
Six multiparous Holstein cows (average 31 days in milk; 36.3 kg/d of milk) fitted with ruminal cannulas were used in a 6 x 6 Latin square with 21-d periods to investigate the effects of diets that varied in forage source and amount of supplemental tallow. Isonitrogenous diets in a 2 x 3 factorial arrangement were based on either high corn silage (40:10 corn silage to alfalfa silage, % of dry matter) or high alfalfa silage (10:40 corn silage to alfalfa silage, % of dry matter) and contained 0, 2, or 4% tallow. Intakes of dry matter and total fatty acids were lower when cows were fed the high corn silage diet. Tallow supplementation linearly decreased dry matter intake. Milk yield was unaffected by diet; yields of milk fat and 3.5% fat-corrected milk were higher for the high alfalfa silage diet but were unaffected by tallow. Milk fat percentage was higher for the high alfalfa silage and tended to decrease when tallow was added to the high corn silage diet. Contents of trans-C18:1 isomers in milk fat were increased by high corn silage and tallow, and tended to be increased more when tallow was fed in the high corn silage diet. Ruminal pH and acetate:propionate were lower when high corn silage was fed. Ruminal acetate:propionate decreased linearly as tallow increased; the molar proportion of acetate was decreased more when tallow was added to the high corn silage diet. Ruminal liquid dilution rates were higher for the alfalfa silage diet; ruminal volume and solid passage rates were similar among diets. Total tract apparent digestibilities of dry matter, organic matter, crude protein, starch, energy, and total fatty acids were unaffected by diet. Digestibilities of neutral detergent fiber, acid detergent fiber, hemicellulose, and cellulose were lower when high corn silage was fed. The high alfalfa silage diet increased intakes of metabolizable energy and N, and increased milk energy and productive N. Tallow decreased the amount of N absorbed but had few other effects on utilization of energy or N. Tallow linearly increased concentrations of nonesterified fatty acids and cholesterol in plasma; cholesterol was increased by high alfalfa silage. Overall, forage source had more pronounced effects on production and metabolism than did tallow supplementation. Few interactions between forage source and tallow supplementation were detected except that ruminal fermentation and milk fat content were affected more negatively when tallow was fed in the high corn silage diet.  相似文献   

17.
A leafy corn hybrid was compared to a grain corn hybrid as silage and high moisture grain to evaluate dry matter intake, milk yield, and milk composition. Sixteen multiparous Holstein cows averaging 97 DIM were used in a feeding trial based on 4 x 4 Latin squares with 21-d periods. Each of four diets contained (dry basis) 8% chopped hay, 42% corn silage, 11% high moisture corn grain, 10% whole, fuzzy cottonseed, and 29% protein concentrate. One diet used leafy corn as both high moisture grain and silage. A second diet contained grain corn hybrid (control) as both high moisture grain and silage. A third diet contained leafy corn for high moisture grain and control corn for silage and the fourth diet used control corn for high moisture grain and leafy corn for silage. Cows fed diets containing leafy silage produced more milk and milk protein and ate more DM than cows fed control silage. The corn hybrid used for high moisture grain did not influence milk yield or composition. Dry matter intake was greater for cows fed the diet containing both leafy high moisture grain and leafy silage than for cows fed both control high moisture grain and control silage, but milk yield and composition were not different. When fed as silage, the leafy corn hybrid used in this experiment supported greater DMI as well as higher milk and protein yields when compared to the grain corn hybrid.  相似文献   

18.
In this experiment, we evaluated the influence of increasing chop length and mechanical processing of whole-plant brown-midrib corn silage on intake, digestion, and milk production by dairy cows. Corn silage treatments were harvested at three-quarter milk line stage of maturity at 13- and 19-mm theoretical chop length without processing, or at 19- and 32-mm theoretical chop length with processing at a 2-mm roll clearance. Twenty-four multiparous Holstein cows that averaged 102 +/- 17 d in milk at trial initiation were randomly assigned to treatments in a replicated 4 x 4 Latin square design with 28-d periods. Preplanned orthogonal contrasts were used to evaluate effects of processing (19 processed vs. 19 mm unprocessed) and chop length (13 vs. 19 mm unprocessed and 19 vs. 32 mm processed). Treatments were fed in total mixed rations containing 60% forage (67% corn silage and 33% alfalfa silage) and 40% shelled corn and soybean meal-based concentrate (dry matter basis). Milk yield was unaffected by treatment. Dry matter intake was unaffected by corn silage processing, but increasing corn silage chop length reduced dry matter intake in unprocessed (26.6 vs. 25.5 kg/d) and processed (25.9 vs. 25.1 kg/d) chop length contrasts. Processing reduced milk fat content (3.36 vs. 3.11%) and yield (1.43 vs. 1.35 kg/d), increased total-tract starch digestion (92.9 vs. 97.4%), and decreased total-tract neutral detergent fiber digestion (51.0 vs. 41.8%). Total chewing time (min/d) was unaffected by treatment. Masticate mean particle length was unaffected by chop length in unprocessed and processed corn silage treatments. In this study with brown-midrib corn silage fed to dairy cows producing 43 kg/d of milk, there were no benefits from crop processing or increasing chop length on lactation performance.  相似文献   

19.
This study aimed to evaluate the effects of length of chop of corn silage and forage:concentrate ratio (F:C) on performance and milk fatty acid profiles in dairy cows supplemented with flaxseed. Our hypothesis was that decreasing forage particle length and F:C ratio would increase unsaturated fatty acid flow to the small intestine and subsequent transfer of these unsaturated fatty acids into milk. Eight Holstein cows (648.1 ± 71.5 kg body weight; 109.6 ± 43.6 days in milk) were used in a replicated 4 × 4 Latin square design with 21-d periods and a 2 × 2 factorial arrangement of dietary treatments. Dietary factors were: 1) F:C ratios (dry matter basis) of 55:45 and 45:55; and 2) corn silage particle lengths of 9.52 and 19.05 mm. All experimental cows received 1 kg of flaxseed to substitute for 1 kg of a rolled barley grain-based concentrate daily. Diets were fed twice daily as a total mixed ration. Corn silage particle length and F:C ratio had no effect on dry matter intake, milk yield, and milk composition; however, feeding short cut corn silage depressed milk protein yield. Significant particle size × F:C ratio interactions were observed for milk fat proportions of C16:0, C18:1cis-9, and C18:2cis-9, trans-11 (a conjugated linoleic acid isomer). At short corn silage particle size, decreasing F:C ratio depressed milk fat proportion of C16:0. Conversely, feeding short corn silage at high F:C ratio increased the proportion of C18:1cis-9 and C18:2cis-9, trans-11 in milk fat. The milk fat proportion of C18:2trans-10, cis-12, a conjugated linoleic acid isomer that is associated with milk fat depression, was not affected by dietary treatment. Our results show that corn silage particle length and F:C ratio influence milk fatty acid profiles in dairy cows fed supplemental flaxseed as a source of polyunsaturated fatty acids.  相似文献   

20.
Kernel processing and theoretical length of cut (TLOC) of whole-plant corn silage (WPCS) can affect feed intake, digestibility, and performance of dairy cows. The objective of this study was to evaluate for lactating dairy cows the effects of kernel processing and TLOC of WPCS with vitreous endosperm. The treatments were a pull-type forage harvester without kernel processor set for a 6-mm TLOC (PT6) and a self-propelled forage harvester with kernel processor set for a 6-mm TLOC (SP6), 12-mm TLOC (SP12), and 18-mm TLOC (SP18). Processing scores of the WPCS were 32.1% (PT6), 53.9% (SP6), 49.0% (SP12), and 40.1% (SP18). Twenty-four Holstein cows (139 ± 63 d in milk) were blocked and assigned to six 4 × 4 Latin squares with 24-d periods (18 d of adaptation). Diets were formulated to contain 48.5% WPCS, 15.5% citrus pulp, 15.0% dry ground corn, 9.5% soybean meal, 6.8% low rumen degradability soybean meal, 1.8% calcium soap of palm fatty acids (FA), 1.7% mineral and vitamin mix, and 1% urea (dry matter basis). Nutrient composition of the diets (% of dry matter) was 16.5% crude protein, 28.9% neutral detergent fiber, and 25.4% starch. Three orthogonal contrasts were used to compare treatments: effect of kernel processing (PT6 vs. SP6) and effect of TLOC (particle size; SP6 vs. SP12 and SP12 vs. SP18). Cows fed SP6 produced 1.2 kg/d greater milk yield with no changes in dry matter intake, resulting in greater feed efficiency compared with PT6. Cows fed SP6 also produced more milk protein (+36 g/d), lactose (+61 g/d), and total solids (+94 g/d) than cows fed PT6. The mechanism for increased yield of milk and milk components involved greater kernel fragmentation, starch digestibility, and glucose availability for lactose synthesis by the mammary gland. However, cows fed SP6 had lower chewing time and tended to have greater levels of serum amyloid A compared with PT6. Milk yield was similar for SP6 and SP12, but SP12 cows tended to have less serum amyloid A with greater chewing time. Cows fed SP18 had lower total-tract starch digestibility and tended to have lower plasma glucose and produce less milk compared with cows fed SP12. Compared with PT6, feeding SP6 raised linear odd-chain FA concentration in milk. Similarly, a reduction of these same FA occurred for SP12 compared with SP6. Cows fed SP6 had greater proportion of milk C14:1 and C16:1 compared with PT6 and SP12. Lesser trans C18:1 followed by greater C18:0 concentrations were observed for SP12 and PT6 compared with SP6, which is an indication of more complete biohydrogenation in the rumen. Under the conditions of this study, the use of a self-propelled forage harvester with kernel processing set for a 12-mm TLOC is recommended for WPCS from hybrids with vitreous endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号