首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The objectives of this study were to evaluate the prediction performance of the single-step genomic BLUP method using a multi-trait random regression model in genomic evaluation for milk production traits of Chinese Holsteins, and investigate how parameters w, τ, and ω used in the construction of the combined relationship matrix (H) affected prediction accuracy and bias. A total of 2.8 million test-day records from 0.2 million cows were available for milk, protein, and fat yields. Pedigree information included 0.3 million animals and 7,577 of them were genotyped with medium-density single nucleotide polymorphism marker panels. Genotypes were imputed into Geneseek Genomic Profiler HD (GeneSeek, Lincoln, NE) including 77K markers. A reduced data set for evaluating models was extracted from the full data set by removing test-day records from the last 4 yr. Bull and cow validation populations were constructed for each trait. We evaluated the prediction performance of the multiple-trait multiple-lactation random regression single-step genomic BLUP (RR-ssGBLUP) models with different values of parameters w, τ, and ω in the H matrix, taking consideration of inbreeding. We compared RR-ssGBLUP with the multiple-trait multiple-lactation random regression model based on pedigree and genomic BLUP. De-regressed proofs for 305-d milk, protein, and fat yields averaged over 3 lactations, which were calculated from the full data set, were used for posteriori validations. The results showed that RR-ssGBLUP was feasible for implementation in breeding practice, and its prediction performance was superior to the other 2 methods in the comparison, including prediction accuracy and unbiasedness. For bulls, RR-ssGBLUP models with w0.05τ2.0ω1.0,w0.05τ2.5ω1.0, and w0.1τ1.6ω0.4 achieved the best performance for milk, protein, and fat yields, respectively. For cows, the RR-ssGBLUP with w0.2τ1.6ω0.4 performed the best for all 3 traits. The H matrix constructed with larger τ and smaller ω gave better convergence in solving mixed model equations. Among different RR-ssGBLUP models, the differences in validation accuracy were small. However, the regression coefficient indicating prediction bias varied substantially. The increase of w and τ, and decrease of ω, led to an increase in the regression coefficient. The results demonstrated RR-ssGBLUP is a good alternative to the multi-step approach, but the optimal choice of parameters should be found via preliminary validation study to achieve the best performance.  相似文献   

2.
Marker sets used in US dairy genomic predictions were previously expanded by including high-density (HD) or sequence markers with the largest effects for Holstein breed only. Other non-Holstein breeds lacked enough HD genotyped animals to be used as a reference population at that time, and thus were not included in the genomic prediction. Recently, numbers of non-Holstein breeds genotyped using HD panels reached an acceptable level for imputation and marker selection, allowing HD genomic prediction and HD marker selection for Holstein plus 4 other breeds. Genotypes for 351,461 Holsteins, 347,570 Jerseys, 42,346 Brown Swiss, 9,364 Ayrshires (including Red dairy cattle), and 4,599 Guernseys were imputed to the HD marker list that included 643,059 SNP. The separate HD reference populations included Illumina BovineHD (San Diego, CA) genotypes for 4,012 Holsteins, 407 Jerseys, 181 Brown Swiss, 527 Ayrshires, and 147 Guernseys. The 643,059 variants included the HD SNP and all 79,254 (80K) genetic markers and QTL used in routine national genomic evaluations. Before imputation, approximately 91 to 97% of genotypes were unknown for each breed; after imputation, 1.1% of Holstein, 3.2% of Jersey, 6.7% of Brown Swiss, 4.8% of Ayrshire, and 4.2% of Guernsey alleles remained unknown due to lower density haplotypes that had no matching HD haplotype. The higher remaining missing rates in non-Holstein breeds are mainly due to fewer HD genotyped animals in the imputation reference populations. Allele effects for up to 39 traits were estimated separately within each breed using phenotypic reference populations that included up to 6,157 Jersey males and 110,130 Jersey females. Correlations of HD with 80K genomic predictions for young animals averaged 0.986, 0.989, 0.985, 0.992, and 0.978 for Jersey, Ayrshire, Brown Swiss, Guernsey, and Holstein breeds, respectively. Correlations were highest for yield traits (about 0.991) and lowest for foot angle and rear legs–side view (0.981and 0.982, respectively). Some HD effects were more than twice as large as the largest 80K SNP effect, and HD markers had larger effects than nearby 80K markers for many breed-trait combinations. Previous studies selected and included markers with large effects for Holstein traits; the newly selected HD markers should also improve non-Holstein and crossbred genomic predictions and were added to official US genomic predictions in April 2020.  相似文献   

3.
Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01–0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets.  相似文献   

4.
This study investigated reliability of genomic predictions using medium-density (40,089; 50K) or high-density (HD; 388,951) marker sets. We developed an approximate method to test differences in validation reliability for significance. Model-based reliability and the effect of HD genotypes on inflation of predictions were analyzed additionally. Genomic breeding values were predicted for at least 1,321 validation bulls based on phenotypes and genotypes of at least 5,324 calibration bulls by means of a linear model in milk, fat, and protein yield; somatic cell score; milkability; muscling; udder, feet, and legs score as well as stature. In total, 1,485 bulls were actually HD genotyped and HD genotypes of the other animals were imputed from 50K genotypes using FImpute software. Validation reliability was measured as the coefficient of determination of the weighted regression of daughter yield deviations on predicted breeding values divided by the reliability of daughter yield deviations and inflation was evaluated by the slope of this regression. Model-based reliability was calculated from the model. Distributions for validation reliability of 50K markers were derived by repeated sampling of 50,000-marker samples from HD to test differences in validation reliability statistically. Additionally, the benefit of HD genotypes in validation reliability was tested by repeated sampling of validation groups and calculation of the difference in validation reliability between HD and 50K genotypes for the sampled groups of bulls. The mean benefit in validation reliability of HD genotypes was 0.015 compared with real 50K genotypes and 0.028 compared with 50K samples from HD affected by imputation error and was significant for all traits. The model-based reliability was, on average, 0.036 lower and the regression coefficient was 0.036 closer to the expected value with HD genotypes. The observed gain in validation reliability with HD genotypes was similar to expectations based on the number of markers and the effective number of segregating chromosome segments. Sampling error in the marker-based relationship coefficients causing overestimation of the model-based reliability was smaller with HD genotypes. Inflation of the genomic predictions was reduced with HD genotypes, accordingly. Similar effects on model-based reliability and inflation, but not on the validation reliability, were obtained by shrinkage estimation of the realized relationship matrix from 50K genotypes.  相似文献   

5.
Milk is regarded as an important nutrient for humans, and Chinese Holstein cows provide high-quality milk for billions of Chinese people. Therefore, detecting quantitative trait nucleotides (QTN) or candidate genes for milk production traits in Chinese Holstein is important. In this study, we performed genome-wide association studies (GWAS) in a Chinese Holstein population of 6,675 cows and 71,633 SNP using deregressed proofs (DRP) as phenotypes to replicate our previous study in a population of 1,815 cows and 39,163 SNP using estimated breeding values (EBV) as phenotypes. The associations between 3 milk production traits—milk yield (MY), fat percentage (FP), and protein percentage (PP)—and the SNP were determined by using an efficient rotated linear mixed model, which benefits from linear transformations of genomic estimated values and Eigen decomposition of the genomic relationship matrix algorithm. In total, we detected 94 SNP that were significantly associated with one or more milk production traits, including 7 SNP for MY, 76 for FP, and 36 for PP; 87% of these SNP were distributed across Bos taurus autosomes 14 and 20. In total, 83 SNP were found to be located within the reported quantitative trait loci (QTL) regions, and one novel segment (between 1.41 and 1.49 Mb) on chromosome 14 was significantly associated with FP, which could be an important candidate QTL region. In addition, the detected intervals were narrowed down from the reported regions harboring causal variants. The top significant SNP for the 3 traits was ARS-BFGL-NGS-4939, which is located within the DGAT1 gene. Five detected genes (CYHR1, FOXH1, OPLAH, PLEC, VPS28) have effects on all 3 traits. Our study provides a suite of QTN, candidate genes, and a novel QTL associated with milk production traits, and thus forms a solid basis for genomic selection and molecular breeding for milk production traits in Chinese Holstein.  相似文献   

6.
In a 2-step genomic system, genotypes of animals without phenotypes do not influence genomic prediction of other animals, but that might not be the case in single-step systems. We investigated the effects of including genotypes from culled bulls on the reliability of genomic predictions from single-step evaluations. Four scenarios with a constant amount of phenotypic information and increasing numbers of genotypes from culled bulls were simulated and compared with respect to prediction reliability. With increasing numbers of genotyped culled bulls, there was a corresponding increase in prediction reliability. For instance, in our simulation scenario the reliability for selection candidates was twice as large when all culled bulls from the last 4 generations were included in the analysis. Single-step evaluations imply the imputation of all nongenotyped animals in the pedigree. We showed that this imputation was increasingly more accurate as increasingly more genotypic information from the culled bulls was taken into account. This resulted in higher prediction reliabilities. The extent of the benefit from including genotypes from culled bulls might be more relevant for small populations with low levels of reliabilities.  相似文献   

7.
Cost-effective high-density (HD) genotypes of livestock species can be obtained by genotyping a proportion of the population using a HD panel and the remainder using a cheaper low-density panel, and then imputing the missing genotypes that are not directly assayed in the low-density panel. The efficacy of genotype imputation can largely be affected by the structure and history of the specific target population and it should be checked before incorporating imputation in routine genotyping practices. Here, we investigated the efficacy of imputation in crossbred dairy cattle populations of East Africa using 4 different commercial single nucleotide polymorphisms (SNP) panels, 3 reference populations, and 3 imputation algorithms. We found that Minimac and a reference population, which included a mixture of crossbred and ancestral purebred animals, provided the highest imputation accuracy compared with other scenarios of imputation. The accuracies of imputation, measured as the correlation between real and imputed genotypes averaged across SNP, were around 0.76 and 0.94 for 7K and 40K SNP, respectively, when imputed up to a 770K panel. We also presented a method to maximize the imputation accuracy of low-density panels, which relies on the pairwise (co)variances between SNP and the minor allele frequency of SNP. The performance of the developed method was tested in a 5-fold cross-validation process where various densities of SNP were selected using the (co)variance method and also by alternative SNP selection methods and then imputed up to the HD panel. The (co)variance method provided the highest imputation accuracies at almost all marker densities, with accuracies being up to 0.19 higher than the random selection of SNP. The accuracies of imputation from 7K and 40K panels selected using the (co)variance method were around 0.80 and 0.94, respectively. The presented method also achieved higher accuracy of genomic prediction at lower densities of selected SNP. The squared correlation between genomic breeding values estimated using imputed genotypes and those from the real 770K HD panel was 0.95 when the accuracy of imputation was 0.64. The presented method for SNP selection is straightforward in its application and can ensure high accuracies in genotype imputation of crossbred dairy populations in East Africa.  相似文献   

8.
The accuracy of genomic prediction determines response to selection. It has been hypothesized that accuracy of genomic breeding values can be increased by a higher density of variants. We used imputed whole-genome sequence data and various single nucleotide polymorphism (SNP) selection criteria to estimate genomic breeding values in Brown Swiss cattle. The extreme scenarios were 50K SNP chip data and whole-genome sequence data with intermediate scenarios using linkage disequilibrium-pruned whole-genome sequence variants, only variants predicted to be missense, or the top 50K variants from genome-wide association studies. We estimated genomic breeding values for 3 traits (somatic cell score, nonreturn rate in heifers, and stature) and found differences in accuracy levels between traits. However, among different SNP sets, accuracy was very similar. In our analyses, sequence data led to a marginal increase in accuracy for 1 trait and was lower than 50K for the other traits. We concluded that the inclusion of imputed whole-genome sequence data does not lead to increased accuracy of genomic prediction with the methods.  相似文献   

9.
Left-sided displacement of the abomasum (LDA) is a frequent disease in dairy cattle causing significant financial losses for dairy farmers. Heritability (h2) of this complex disease was estimated at up to 0.5 in German Holstein (GH) cattle. Using the Bovine High Density BeadChip (Illumina Inc., San Diego, CA) comprising 588,753 single nucleotide polymorphisms (SNP) after quality control for 126 LDA cases and 280 population-based controls, we used a mixed linear model analysis in a genome-wide association study (GWAS). We identified 6 genomic regions for LDA on bovine chromosomes 2, 8, 13, 20, 24, and X that were significantly associated with LDA. Each of these regions was covered by 4 to 12 LDA-associated SNP. Single SNP within these regions explained up to 7.3% of the phenotypic variance. An independent sample of 1,554 GH cows, including 539 controls and 1,015 cases, were genotyped for 8 SNP highly associated with LDA on Bos taurus autosomes (BTA) 2, 8, 13, and 24, as well as 6 SNP located in previously identified LDA regions on BTA1, 5, 11, and 27 using competitive allele-specific PCR genotyping technology (KASP). The analysis using the KASP genotypes confirmed LDA-associated loci on BTA2, 8, 13, and 27. These genomic regions may contribute to the susceptibility to LDA in Holstein cows and may harbor functional variants for LDA.  相似文献   

10.
Mycobacterium avium ssp. paratuberculosis (MAP) is the etiological agent of Johne's disease in cattle. Johne's disease is a disease of significant economic, animal welfare, and public health concern around the globe. Therefore, understanding the genetic architecture of resistance to MAP infection has great relevance to advance genetic selection methods to breed more resistant animals. The objectives of this study were to perform a genome-wide association study of previously analyzed 50K genotypes now imputed to a high-density single nucleotide polymorphism panel (777K), aiming to validate previously reported associations and potentially identify additional single nucleotide polymorphisms associated with antibody response to MAP infection. A principal component regression-based genome-wide association study revealed 15 putative quantitative trait loci (QTL) associated with the MAP infection phenotype (serum or milk ELISA tests) on 9 different chromosomes (Bos taurus autosomes 5, 6, 7, 10, 14, 15, 16, 20, and 21). These results validated previous findings and identified new QTL on Bos taurus autosomes 15, 16, 20, and 21. The positional candidate genes NLRP3, IFi47, TRIM41, TNFRSF18, and TNFRSF4 lying within these QTL were identified. Further functional validation of these genes is now warranted to investigate their roles in regulating the immune response and, consequently, cattle resistance to MAP infection.  相似文献   

11.
In recent years, it has been shown that not only is the phenotype under genetic control, but also the environmental variance. Very little, however, is known about the genetic architecture of environmental variance. The main objective of this study was to unravel the genetic architecture of the mean and environmental variance of somatic cell score (SCS) by identifying genome-wide associations for mean and environmental variance of SCS in dairy cows and by quantifying the accuracy of genome-wide breeding values. Somatic cell score was used because previous research has shown that the environmental variance of SCS is partly under genetic control and reduction of the variance of SCS by selection is desirable. In this study, we used 37,590 single nucleotide polymorphism (SNP) genotypes and 46,353 test-day records of 1,642 cows at experimental research farms in 4 countries in Europe. We used a genomic relationship matrix in a double hierarchical generalized linear model to estimate genome-wide breeding values and genetic parameters. The estimated mean and environmental variance per cow was used in a Bayesian multi-locus model to identify SNP associated with either the mean or the environmental variance of SCS. Based on the obtained accuracy of genome-wide breeding values, 985 and 541 independent chromosome segments affecting the mean and environmental variance of SCS, respectively, were identified. Using a genomic relationship matrix increased the accuracy of breeding values relative to using a pedigree relationship matrix. In total, 43 SNP were significantly associated with either the mean (22) or the environmental variance of SCS (21). The SNP with the highest Bayes factor was on chromosome 9 (Hapmap31053-BTA-111664) explaining approximately 3% of the genetic variance of the environmental variance of SCS. Other significant SNP explained less than 1% of the genetic variance. It can be concluded that fewer genomic regions affect the environmental variance of SCS than the mean of SCS, but genes with large effects seem to be absent for both traits.  相似文献   

12.
Genomic selection has been widely implemented in many livestock breeding programs, but it remains incipient in buffalo. Therefore, this study aimed to (1) estimate variance components incorporating genomic information in Murrah buffalo; (2) evaluate the performance of genomic prediction for milk-related traits using single- and multitrait random regression models (RRM) and the single-step genomic best linear unbiased prediction approach; and (3) estimate longitudinal SNP effects and candidate genes potentially associated with time-dependent variation in milk, fat, and protein yields, as well as somatic cell score (SCS) in multiple parities. The data used to estimate the genetic parameters consisted of a total of 323,140 test-day records. The average daily heritability estimates were moderate (0.35 ± 0.02 for milk yield, 0.22 ± 0.03 for fat yield, 0.42 ± 0.03 for protein yield, and 0.16 ± 0.03 for SCS). The highest heritability estimates, considering all traits studied, were observed between 20 and 280 d in milk (DIM). The genetic correlation estimates at different DIM among the evaluated traits ranged from ?0.10 (156 to 185 DIM for SCS) to 0.61 (36 to 65 DIM for fat yield). In general, direct selection for any of the traits evaluated is expected to result in indirect genetic gains for milk yield, fat yield, and protein yield but also increase SCS at certain lactation stages, which is undesirable. The predicted RRM coefficients were used to derive the genomic estimated breeding values (GEBV) for each time point (from 5 to 305 DIM). In general, the tuning parameters evaluated when constructing the hybrid genomic relationship matrices had a small effect on the GEBV accuracy and a greater effect on the bias estimates. The SNP solutions were back-solved from the GEBV predicted from the Legendre random regression coefficients, which were then used to estimate the longitudinal SNP effects (from 5 to 305 DIM). The daily SNP effect for 3 different lactation stages were performed considering 3 different lactation stages for each trait and parity: from 5 to 70, from 71 to 150, and from 151 to 305 DIM. Important genomic regions related to the analyzed traits and parities that explain more than 0.50% of the total additive genetic variance were selected for further analyses of candidate genes. In general, similar potential candidate genes were found between traits, but our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the traits across parities. These results contribute to a better understanding of the genetic architecture of milk production traits in dairy buffalo and reinforce the relevance of incorporating genomic information to genetically evaluate longitudinal traits in dairy buffalo. Furthermore, the candidate genes identified can be used as target genes in future functional genomics studies.  相似文献   

13.
The purpose of this study was to investigate the imputation error and loss of reliability of direct genomic values (DGV) or genomically enhanced breeding values (GEBV) when using genotypes imputed from a 3,000-marker single nucleotide polymorphism (SNP) panel to a 50,000-marker SNP panel. Data consisted of genotypes of 15,966 European Holstein bulls from the combined EuroGenomics reference population. Genotypes with the low-density chip were created by erasing markers from 50,000-marker data. The studies were performed in the Nordic countries (Denmark, Finland, and Sweden) using a BLUP model for prediction of DGV and in France using a genomic marker-assisted selection approach for prediction of GEBV. Imputation in both studies was done using a combination of the DAGPHASE 1.1 and Beagle 2.1.3 software. Traits considered were protein yield, fertility, somatic cell count, and udder depth. Imputation of missing markers and prediction of breeding values were performed using 2 different reference populations in each country: either a national reference population or a combined EuroGenomics reference population. Validation for accuracy of imputation and genomic prediction was done based on national test data. Mean imputation error rates when using national reference animals was 5.5 and 3.9% in the Nordic countries and France, respectively, whereas imputation based on the EuroGenomics reference data set gave mean error rates of 4.0 and 2.1%, respectively. Prediction of GEBV based on genotypes imputed with a national reference data set gave an absolute loss of 0.05 in mean reliability of GEBV in the French study, whereas a loss of 0.03 was obtained for reliability of DGV in the Nordic study. When genotypes were imputed using the EuroGenomics reference, a loss of 0.02 in mean reliability of GEBV was detected in the French study, and a loss of 0.06 was observed for the mean reliability of DGV in the Nordic study. Consequently, the reliability of DGV using the imputed SNP data was 0.38 based on national reference data, and 0.48 based on EuroGenomics reference data in the Nordic validation, and the reliability of GEBV using the imputed SNP data was 0.41 based on national reference data, and 0.44 based on EuroGenomics reference data in the French validation.  相似文献   

14.
Genomic selection using dense markers covering the whole genome is a tool for the genetic improvement of livestock and is revolutionizing the breeding system in dairy cattle. Progeny-tested bulls have been used to form reference populations in almost all countries where genomic selection has been implemented. In this study, the accuracy of genomic prediction when cows are used to form the reference population was investigated. The reference population consisted of 3,087 cows. All individuals were genotyped with Illumina BovineSNP50. After genotype imputation and editing, 48,676 single nucleotide polymorphisms were available for analysis. Two methods, genomic BLUP (GBLUP) and BayesB, were used to render genomic estimated breeding values (GEBV) for 5 milk production traits. Accuracies of GEBV were assessed in 3 ways: rGEBV,EBV (the correlation between GEBV and conventional EBV) in 67 progeny-tested bulls, rGEBV,EBV from a 5-fold cross validation in the 3,087 cow reference population, and the theoretical accuracy (for GBLUP) calculated in the same way as for conventional BLUP. The results showed that using GBLUP, the rGEBV,EBV and theoretical accuracy of genomic prediction in Chinese Holstein ranged from 0.59 to 0.76 and 0.70 to 0.80, respectively, which was 0.13 to 0.30 and 0.23 to 0.33 higher than the accuracies of conventional pedigree index, respectively. The results indicate that, as an alternative, genomic selection using cows in the reference population is feasible.  相似文献   

15.
Single-step genomic prediction models utilizing both genotyped and nongenotyped animals are likely to become the prevailing tool in genetic evaluations of livestock. Various single-step prediction models have been proposed, based either on estimation of individual marker effects or on direct prediction via a genomic relationship matrix. In this study, a classical pedigree-based animal model, a regular single-step genomic BLUP (ssGBLUP) model, algorithm for proven and young (APY) with 2 strategies for choosing core animals, and a single-step Bayesian regression (ssBR) model were compared for 305-d production traits (milk, fat, protein) in the Finnish red dairy cattle population. A residual polygenic effect with 10% of total genetic variance was included in the single-step models to reduce inflation of genomic predictions. Validation reliability was calculated as the squared Pearson correlation coefficient between genomically enhanced breeding value (GEBV) and yield deviation for masked records for 2,056 validation cows from the last year in the data set investigated. The results showed that gains of 0.02 to 0.04 on validation reliability were achieved by using single-step methods compared with the classical animal model. The regular ssGBLUP model and ssBR model with an extra polygenic effect yielded the same results. The APY methods yielded similar reliabilities as the regular ssGBLUP and ssBR. Exact prediction error variance of GEBV could be obtained by ssBR to avoid any approximation methods used for ssGBLUP when inversion left-hand side of mixed model equations is computationally infeasible for large data sets.  相似文献   

16.
The objective of this research was to estimate the genetic parameters of body condition score (BCS) in the first 3 lactations in Canadian Holstein dairy cattle using a multiple-lactation random regression animal model. Field staff from Valacta milk recording agency (Sainte-Anne-de-Bellevue, QC, Canada) collected BCS from Québec herds several times throughout each lactation. Approximately 32,000, 20,000, and 11,000 first-, second-, and third-parity BCS were analyzed, respectively, from a total of 75 herds. Body condition score was a moderately heritable trait over the lactation for parity 1, 2, and 3, with average daily heritabilities of 0.22, 0.26, and 0.30, respectively. Daily heritability ranged between 0.14 and 0.26, 0.19 and 0.28, and 0.24 and 0.33 for parity 1, 2, and 3, respectively. Genetic variance of BCS increased with days in milk within lactations. The low genetic variance in early lactation suggests that the evolution of the ability to mobilize tissue reserves in early lactation provided cattle with a major advantage, and is, therefore, somewhat conserved. The increasing genetic variance suggests that more genetic differences were related to how well cows recovered from the negative energy balance state. More specifically, increasing genetic variation as lactation progressed could be a reflection of genetic differences in the ability of cows to efficiently control the rate of mobilization of tissue reserves, which would not be crucial in early lactation. The shape of BCS curves was similar across parities. From first to third parity, differences included the progressively deeper nadir and faster rate of recovery of condition. Daily genetic correlations between parities were calculated from 5 to 305 DIM, and were summed and divided by 301 to obtain average daily genetic correlations. The average daily genetic correlations were 0.84 between parity 1 and 2, 0.83 between parity 1 and 3, and 0.86 between parity 2 and 3. Although not 1, these genetic correlations are still strong, so much of the variation observed in BCS was controlled by the same genes for each of the first 3 lactations. If a genetic evaluation for BCS is developed, regular collection of first-lactation BCS records should be sufficient for genetic evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号