首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheese yield is strongly influenced by the composition of milk, especially fat and protein contents, and by the efficiency of the recovery of each milk component in the curd. The real effect of milk composition on cheesemaking ability of goat milk is still unknown. The aims of this study were to quantify the effects of milk composition; namely, fat, protein, and casein contents, on milk nutrient recovery in the curd, cheese yield, and average daily yield. Individual milk samples were collected from 560 goats of 6 different breeds. Each sample was analyzed in duplicate using the 9-laboratory milk cheesemaking assessment, a laboratory method that mimicked cheesemaking procedures, with milk heating, rennet addition, coagulation, curd cutting, and draining. Data were submitted to statistical analysis; results showed that the increase of milk fat content was associated with a large improvement of cheese yield because of the higher recovery of all milk nutrients in the curd, and thus a higher individual daily cheese yield. The increase of milk protein content affected the recovery of fat, total solids, and energy in the curd. Casein number, calculated as casein-to-protein ratio, did not affect protein recovery but strongly influenced the recovery of fat, showing a curvilinear pattern and the most favorable data for the intermediate values of casein number. In conclusion, increased fat and protein contents in the milk had an effect on cheese yield not only for the greater quantity of nutrients available but also for the improved efficiency of the recovery in the curd of all nutrients. These results are useful to improve knowledge on cheesemaking processes in the caprine dairy industry.  相似文献   

2.
《Journal of dairy science》2022,105(8):6724-6738
At the global level, the quantity of goat milk produced and its gross production value have increased considerably over the last 2 decades. Although many scientific papers on this topic have been published, few studies have been carried out on bulk goat milk samples. The aim of the present study was to investigate in the field the effects of farming system, breed type, individual flock, and stage of production on the composition, coagulation properties (MCP), curd firming over time parameters (CFt), predicted cheese yield (CY%), and nutrient recovery traits (REC) of 432 bulk milk samples from 161 commercial goat farms in Sardinia, Italy. We found that the variance due to individual flock was of the same order as the residual variance for almost all composition and cheesemaking traits. With regard to the fixed effects, the effect of farming system on bulk milk variability was not highly significant for the majority of traits (it was lower than individual flock), whereas the effects of breed type and stage of production were much higher. More specifically, the intensive farms produced milk with the best concentrations of almost all constituents, whereas extensive farms exhibited faster rennet coagulation times, a slower rate of curd firming, lower potential curd firmness, and lower percentages of fat and energy recoveries in the fresh curd. Farms rearing the local breed, Sarda, alone or together with the Maltese breed, produced milk with the best concentrations of fat and protein, superior curd firmness, and better predicted percentage of fresh curd (CYCURD) and recovery traits. The results show the potential of both types of breed, either for their quantitative (specialized breeds) or their qualitative (local breeds) attributes. As expected, the concentrations of fat, protein fractions, and lactose were influenced by the stage of production, with samples collected in the early stage of production (in February and March) having a greater quantity of the main constituents. Somatic cells reached the highest levels in the late stage of production, which corresponds to the goats' advanced stage of lactation (June–July), although no differences were present in the logarithmic bacterial counts between the early and late stages. Regarding cheesemaking potential, bulk milk samples of the late stage were characterized by delayed rennet coagulation and curd firming times, the lowest values of curd firmness, and a general reduction in CY%, and REC traits. In conclusion, we highlight several issues regarding the effects of the most important sources of variation on bulk goat milk, and point to some critical factors relevant for improving dairy goat farming and milk production.  相似文献   

3.
Natural variations in milk minerals, their relationships, and their associations with the coagulation process and cheese-making traits present an opportunity for the differentiation of milk destined for high-quality natural products, such as traditional specialties or Protected Designation of Origin (PDO) cheeses. The aim of this study was to quantify the effects of the native contents of Ca, P, Na, K, and Mg on 18 traits describing traditional milk coagulation properties (MCP), curd firming over time (CFt) equation parameters, cheese yield (CY) measures, and nutrient recoveries in the curd (REC) using models that either included or omitted the simultaneous effects of milk fat and casein contents. The results showed that, by including milk fat and casein and the minerals in the statistical model, we were able to determine the specific effects of each mineral on coagulation and cheese-making efficiency. In general, about two-thirds of the apparent effects of the minerals on MCP and the CFt equation parameters are actually mediated by their association with milk composition, especially casein content, whereas only one-third of the effects are direct and independent of milk composition. In the case of cheese-making traits, the effects of the minerals were mediated only negligibly by their association with milk composition. High Ca content had a positive effect on the coagulation pattern and cheese-making traits, favoring water retention in the curd in particular. Phosphorus positively affected the cheese-making traits in that it was associated with an increase in CY in terms of curd solids, and in all the nutrient recovery traits. However, a very high P content in milk was associated with lower fat recovery in the curd. The variation in the Na content in milk only mildly affected coagulation, whereas with regard to cheese-making, protein recovery was negatively associated with high concentrations of this mineral. Potassium seemed not to be actively involved in coagulation and the cheese-making process. Magnesium content tended to slow coagulation and reduce CY measures. Further studies on the relationships of minerals with casein and protein fractions could deepen our knowledge of the role of all minerals in coagulation and the cheese-making process.  相似文献   

4.
Cheese yield (CY) is the most important technological trait of milk, because cheese-making uses a very high proportion of the milk produced worldwide. Few studies have been carried out at the level of individual milk-producing animals due to a scarcity of appropriate procedures for model-cheese production, the complexity of cheese-making, and the frequent use of the fat and protein (or casein) contents of milk as a proxy for cheese yield. Here, we report a high-throughput cheese manufacturing process that mimics all phases of cheese-making, uses 1.5-L samples of milk from individual animals, and allows the simultaneous processing of 15 samples per run. Milk samples were heated (35°C for 40 min), inoculated with starter culture (90 min), mixed with rennet (51.2 international milk-clotting units/L of milk), and recorded for gelation time. Curds were cut twice (10 and 15 min after gelation), separated from the whey, drained (for 30 min), pressed (3 times, 20 min each, with the wheel turned each time), salted in brine (for 60 min), weighed, and sampled. Whey was collected, weighed, and sampled. Milk, curd, and whey samples were analyzed for pH, total solids, fat content, and protein content, and energy content was estimated. Three measures of percentage cheese yield (%CY) were calculated: %CYCURD, %CYSOLIDS, and %CYWATER, representing the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: RECFAT, RECPROTEIN, and RECSOLIDS, which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Energy recovery, RECENERGY, represented the energy content of the cheese compared with that in the milk. This procedure was used to process individual milk samples obtained from 1,167 Brown Swiss cows reared in 85 herds of the province of Trento (Italy). The assessed traits exhibited almost normal distributions, with the exception of RECFAT. The average values (± SD) were as follows: %CYCURD = 14.97 ± 1.86, %CYSOLIDS = 7.18 ± 0.92, %CYWATER = 7.77 ± 1.27, dCYCURD = 3.63 ± 1.17, dCYSOLIDS = 1.74 ± 0.57, dCYWATER = 1.88 ± 0.63, RECFAT = 89.79 ± 3.55, RECPROTEIN = 78.08 ± 2.43, RECSOLIDS = 51.88 ± 3.52, and RECENERGY = 67.19 ± 3.29. All traits were highly influenced by herd-test-date and days in milk of the cow, moderately influenced by parity, and weakly influenced by the utilized vat. Both %CYCURD and dCYCURD depended not only on the fat and protein (casein) contents of the milk, but also on their proportions retained in the curd; the water trapped in curd presented an higher variability than that of %CYSOLIDS. All REC traits were variable and affected by days in milk and parity of the cows. The described model cheese-making procedure and the results obtained provided new insight into the phenotypic variation of cheese yield and recovery traits at the individual level.  相似文献   

5.
A 100-Year Review: Cheese production and quality   总被引:1,自引:0,他引:1  
In the beginning, cheese making in the United States was all art, but embracing science and technology was necessary to make progress in producing a higher quality cheese. Traditional cheese making could not keep up with the demand for cheese, and the development of the factory system was necessary. Cheese quality suffered because of poor-quality milk, but 3 major innovations changed that: refrigeration, commercial starters, and the use of pasteurized milk for cheese making. Although by all accounts cold storage improved cheese quality, it was the improvement of milk quality, pasteurization of milk, and the use of reliable cultures for fermentation that had the biggest effect. Together with use of purified commercial cultures, pasteurization enabled cheese production to be conducted on a fixed time schedule. Fundamental research on the genetics of starter bacteria greatly increased the reliability of fermentation, which in turn made automation feasible. Demand for functionality, machinability, application in baking, and more emphasis on nutritional aspects (low fat and low sodium) of cheese took us back to the fundamental principles of cheese making and resulted in renewed vigor for scientific investigations into the chemical, microbiological, and enzymatic changes that occur during cheese making and ripening. As milk production increased, cheese factories needed to become more efficient. Membrane concentration and separation of milk offered a solution and greatly enhanced plant capacity. Full implementation of membrane processing and use of its full potential have yet to be achieved. Implementation of new technologies, the science of cheese making, and the development of further advances will require highly trained personnel at both the academic and industrial levels. This will be a great challenge to address and overcome.  相似文献   

6.
李怡林  王瓛  孙培均 《现代食品科技》2008,24(12):1281-1283
采用驯化后的乳酪杆菌为菌种,以豆汁(以m大豆:V水=1:6的比例制成)、纯牛奶、V(豆汁):V(牛奶)=1:1、V(豆汁):V(牛奶)=1:5为原料制作干酪,比较研究不同原料和原料配比对干酪的化学成分、感官评价的影响。结果表明纯牛奶干酪的口感比豆汁干酪爽滑细腻,蛋白质和脂肪含量比纯豆汁的高;复配干酪的口感和脂肪含量介于纯牛奶干酪和豆汁干酪之间,并与牛奶的添加量成正比;复配干酪的蛋白质含量比纯牛奶干酪和豆汁干酪的都低。  相似文献   

7.
Cheese yield (CY) is an important technological trait in the dairy industry, and the objective of this study was to estimate the genetic parameters of cheese yield in a dairy cattle population using an individual model-cheese production procedure. A total of 1,167 Brown Swiss cows belonging to 85 herds were sampled once (a maximum of 15 cows were sampled per herd on a single test day, 1 or 2 herds per week). From each cow, 1,500 mL of milk was processed according to the following steps: milk sampling and heating, culture addition, rennet addition, gelation-time recording, curd cutting, whey draining and sampling, wheel formation, pressing, salting in brine, weighing, and cheese sampling. The compositions of individual milk, whey, and curd samples were determined. Three measures of percentage cheese yield (%CY) were calculated: %CYCURD, %CYSOLIDS, and %CYWATER, which represented the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: RECFAT, RECPROTEIN, and RECSOLIDS, which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding nutrient in the milk. Energy recovery, RECENERGY, represented the energy content of the cheese versus that in the milk. For statistical analysis, a Bayesian animal model was implemented via Gibbs sampling. The effects of parity (1 to ≥4), days in milk (6 classes), and laboratory vat (15 vats) were assigned flat priors; those of herd-test-date, animal, and residual were given Gaussian prior distributions. Intra-herd heritability estimates of %CYCURD, %CYSOLIDS, and %CYWATER ranged from 0.224 to 0.267; these were larger than the estimates obtained for milk yield (0.182) and milk fat content (0.122), and similar to that for protein content (0.275). Daily cheese yields showed heritability estimates similar to those of daily milk yield. The trait %CYWATER showed a highly positive genetic correlation with %CYSOLIDS (0.87), whereas their phenotypic correlation was moderate (0.37), and the fat and protein contents of milk showed high genetic correlations with %CY traits. The heritability estimates of RECPROTEIN and RECFAT were larger (0.490 and 0.208, respectively) than those obtained for the protein and fat contents of milk, and the genetic relationships between RECPROTEIN and RECFAT with milk protein and fat content were low or moderate; RECPROTEIN and RECFAT were moderately correlated with the %CY traits and highly correlated with RECSOLIDS and RECENERGY. Both RECSOLIDS and RECENERGY were heritable (0.274 and 0.232), and showed high correlations with each other (0.96) and with the %CY traits (0.83 to 0.97). Together, these findings demonstrate the existence of economically important, genetically determined variability in cheese yield that does not depend solely upon the fat and protein contents of milk, but also relies on the ability of the coagulum to retain the highest possible proportions of the available protein, fat, and water. Exploitation of this interesting genetic variation does not seem to be feasible through direct measurement of the phenotype in cows at the population level. Instead, further research is warranted to examine possible means for indirect prediction, such as through assessing the mid-infrared spectra of milk samples.  相似文献   

8.
Texture of Cheddar Cheese as Influenced by Fat Reduction   总被引:2,自引:0,他引:2  
Cheddar cheeses with five different fat levels (34, 32, 27, 21, and 13 %) were manufactured in a randomized block design experiment and replicated four times. Cheeses were ripened for 4 months at 7°C. Microstructure was studied using Scanning Electron Microscopy (SEM). Texture characteristics (adhesiveness, cohesiveness, hardness, and springiness) were determined by Texture Profile Analysis (TPA) using the Instron Universal Testing Machine and a trained sensory panel. Scanning electron micrographs showed that the open-intricate microstructure of the cheeses was lost with a decrease in fat content. Hardness and springiness increased while adhesiveness and cohesiveness of the cheeses decreased with decreasing fat content. Texture attributes were influenced by the nature of the protein matrix that resulted due to fat removal.  相似文献   

9.
Goat milk and cheese production is continuously increasing and milk composition and coagulation properties (MCP) are useful tools to predict cheesemaking aptitude. The present study was planned to investigate the extension of lactodynamographic analysis up to 60 min in goat milk, to measure the farm and individual factors, and to investigate differences among 6 goat breeds. Daily milk yield (dMY) was recorded and milk samples collected from 1,272 goats reared in 35 farms. Goats were of 6 different breeds: Saanen and Camosciata delle Alpi for the Alpine type, and Murciano-Granadina, Maltese, Sarda, and Sarda Primitiva for the Mediterranean type. Milk composition (fat, protein, lactose, pH; somatic cell score; logarithmic bacterial count) and MCP [rennet coagulation time (RCT, min), curd-firming time (k20, min), curd firmness at 30, 45, and 60 min after rennet addition (a30, a45, and a60, mm)] were recorded, and daily fat and protein yield (dFPY g/d) was calculated as the sum of fat and protein concentration multiplied by the dMY. Data were analyzed using different statistical models to measure the effects of farm, parity, stage of lactation and breed; lastly, the direct and the indirect effect of breed were quantified by comparing the variance of breed from models with or without the inclusion of linear regression of fat, protein, lactose, pH, bacterial, somatic cell counts, and dMY. Orthogonal contrasts were performed to compare least squares means. Almost all traits exhibited high variability, with coefficients of variation between 32 (for RCT) and 63% (for a30). The proportion of variance regarding dMY, dFPY, and milk composition due to the farm was moderate, whereas for MCP it was low, except for a60, at 69%. Parity affected both yield and quality traits of milk, with least squares means of dMY and dFPY showing an increase and RCT and curd firmness traits a decrease from the first to the last parity class. All milk quality traits, excluding fat, were affected by the stage of lactation; RCT and k20 decreased rapidly and a30 was higher from the first to the last part of lactation. Alpine breeds showed the highest dMY and dFPY but Mediterranean the best percentage of protein, fat, and lactose and a shorter k20 and a greater a30. Among the Mediterranean goats, Murciano-Granadina goats had the highest milk yield, fat, and protein contents, whereas Maltese, Sarda, and Sarda Primitiva were characterized by much more favorable technological properties in terms of k20, a30, and a45. In conclusion, as both the farm and individual factors highly influenced milk composition and MCP traits, improvements of these traits should be based both on modifying management and individual goat factors. As expected, several differences were attributable to the breed effect, with the best milk production for the Alpines and milk quality and coagulation for the Mediterranean goats.  相似文献   

10.
Over a 14-month period, bulk tank milk was collected twice a week and was adjusted with cream and skim milk powder to provide six levels each of fat and protein varying from 3·0 to 4·0%. Milk samples were analyzed for total solids, fat, protein, casein, lactose and somatic cell count and were used for laboratory-scale cheesemaking. Data obtained from the milk input and the cheese output were used to determine actual, moisture adjusted, theoretical yield, and efficiency of yield. Least squares analyses of data indicated that higher cheese yields were obtained from higher fat and protein contents in milk. Higher yield efficiency was associated with higher ratios of protein to fat and casein to fat. Regression analysis indicated that a percentage increase in fat content in milk resulted in an increase of 1·23–1·37% in moisture adjusted yield in the different protein levels. For a similar increase of protein in milk, there were 1·80–2·04% increase in moisture adjusted yields in different fat levels.  相似文献   

11.
Extending the lactation length of dairy cows beyond the traditional 10 mo toward lactations of up to 22 mo has attracted interest in the pasture-based seasonal dairying systems of Australia and New Zealand as a way of alleviating the need for cows to conceive during peak lactation, such as is required to maintain seasonally concentrated calving systems. Lactation lengths longer than 10 mo instead provide cows with more time to cycle and conceive after parturition and may therefore be more suitable systems for high-producing Holstein-Friesian cows. Before recommending such systems there is a need to evaluate the effects of long lactations on the suitability of milk for manufacture of high-quality dairy products. In the current experiment, the composition of milk from cows entering the second half of a 22-mo lactation was examined in detail and compared with that from cows undergoing a traditional 10-mo lactation. On 2 occasions, coagulation properties were measured using low amplitude strain oscillation rheometry, and Cheddar cheese was made in 250-L pilot-scale vats. Results showed that milk from extended lactations had higher concentrations of fat and protein than cows undergoing 10-mo lactations under similar management conditions and at the same time of year. The ratio of casein to true protein was not affected by lactation length and neither were the proportions of individual caseins. The increase in milk solids during extended lactations translated into a more rapid rate of coagulation and ultimately a firmer curd on one of the two occasions. Milk from extended lactations yielded more cheese per 100 kg of milk, and there were few differences in the composition or organoleptic properties of the cheese. These data are the first to show that pasture-based dairy industries could embrace the use of extended lactations without compromising the core business of producing high-quality dairy products.  相似文献   

12.
The aim of this study was to assess the influence of the amounts of the αS1-, αS2-, β-, and κ-casein (CN) and the α-lactalbumin and β-lactoglobulin protein fractions on the efficiency of the cheese-making process independently of their genetic polymorphisms. The study was carried out on milk samples from 1,271 Brown Swiss cows from 85 herds classified into 4 categories according to management, feeding, and housing characteristics (traditional and modern systems). To assess the efficiency of the cheese-making process, we processed the milk samples according to a laboratory cheese-making procedure (1,500 mL/sample) and obtained the following measures: (1) 3 percentage cheese yields (%CYcurd, %CYsolids, %CYwater), (2) 2 daily cheese yields obtained by multiplying %CY (curd and total solids) by daily milk yields (dCYcurd, dCYsolids), (3) 4 measures of nutrient recovery in the curd (RECfat, RECprotein, RECsolids, RECenergy), and (4) 2 measures of cheese-making efficiency in terms of the ratio between the observed and theoretical %CY (Ef-%CYcurd, Ef-%CYsolids). All the aforementioned traits were analyzed by fitting 2 linear mixed models with protein fractions as fixed effects expressed as percentage in the milk (model M-%milk) and as percentage of the total casein content (model M-%cas) together with the effects of total casein content (only in model M-%cas), daily milk yield (only in model M-%milk; not for dCY traits), dairy system, herd (random effect), days in milk, parity, and vat. The efficiency of overall cheese yield (Ef-%CYcurd) was mostly positively associated with β-CN content in the milk, whereas Ef-%CYsolids was greater with higher amounts of κ-CN and αS1-CN (M-%milk) due to the strong influence of both fractions on the recovery rate of milk components in the curd (fat and total solids, protein with αS1-CN only) when expressed as percentage of milk and of total casein; only β-CN was more important for RECprotein. In contrast, we found β-lactoglobulin to be highly negatively related to all the traits related to the cheese-making process and to the daily cheese yield per cow, whereas α-lactalbumin was positively associated with the latter traits. Additional research on this topic is needed, with particular focus on the genetic and genomic aspects of the role of protein fractions in the cheese-making process and on the associations between genetic polymorphisms in milk protein and milk nutrient recovery in the curd.  相似文献   

13.
As estimated on-line, the viscosity after cooling of double cream cheese curd containing heat-denatured WPC (DCC +) increased from 1.4 Pa.s to 1.7 Pa.s when cooled to the range of 45°C to 24°C, and then decreased from 1.7 Pa.s to 1.0 Pa.s when cooled from 24°C to 15°C. The viscosity of DCC- (without heat-denatured WPC) increased from 1.5 Pa.s to 2.2 Pa.s at temperature shift from 40°C to 15.5°C. The firmness of stored DCC + and DCC-, respectively, decreased from 15.1N to 6.5N when cooled to temperatures from 45°C to 15°C, and from 17.9N to 9.9N when cooled from 40°C to 15.5°C, as recorded by cone penetrometry. The structure of DCC+ cooled to 15°C collapsed after penetrometry, and DCC+ cooled to 20°C destabilized during shearing in coaxial cylinder rheometer. A new phase in DCC+ based on milk fat globules liberated by cluster disruption may be the cause of the structural and textural instability.  相似文献   

14.
A study has been carried out on the efficiency of the cheesemaking process when Cheddar cheese was made from milk showing the normal seasonal trends in composition and from milk that had been standardized to a crude protein: fat ratio of 0.9. Standardization resulted in a small loss of yield from a standard volume of milk (averaged over a complete year), but this loss was compensated by an almost equal gain in the efficiency of fat retention.  相似文献   

15.
王泽  张岩  陈炼红 《食品科学》2023,44(2):116-124
为研究Edam牦牛半硬质干酪成熟机理,分别测定成熟0、20、40、60、80 d Edam牦牛干酪的感官、理化、物性、蛋白质和脂肪分解指标,采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和傅里叶变换红外光谱等方法研究酪蛋白降解情况,通过Pearson相关性分析成熟时间与各指标间的相关性。结果表明:随着成熟时间延长,感官评分先下降后上升;水分含量、pH值下降;亮度值(L*)下降,红度值(a*)和黄度值(b*)值上升;硬度、弹性、胶黏性均上升,凝聚性逐渐下降;储能模量和损耗模量升高,损耗角正切值始终小于1;成熟时间与总氮含量、pH 4.6和12%三氯乙酸条件下干酪中可溶性氮含量等呈极显著正相关(P<0.01);脂肪含量先升高后降低,游离脂肪酸含量和硫代巴比妥酸值逐渐增加。酪蛋白(casein,CN)降解研究结果表明:αs1-CN、αs2-CN、β-CN及κ-CN均随成熟时间延长而不断降解,成熟80 d时大分子蛋白降解明显;成熟过程中β-折叠、α-螺旋逐渐向无规卷曲转化;成熟时间与羰基含量、表面疏水性呈极显著正相关(P<0.01),与总巯基含量呈显著负相关(P<0.05)。  相似文献   

16.
The objective of this study was to determine the effect of soy cheese (tofu) and trisodium citrate (TSC) concentration on physicochemical properties of pizza cheese. The results indicated that fat and FDM contents of pizza cheese increased significantly with increased proportion of TSC, while moisture and protein decreased but not significantly (P < 0.05). On the other hand, the fat, FDM, and protein content decreased with increased proportion of tofu, while moisture increased. The melting area and melting degree indicated that melting properties of pizza cheese decreased significantly, as the concentration of TSC increased. Furthermore, increase approximately 5 and 10% tofu in the blends with 0.5% TSC or 10% tofu in the blends with 1% TSC affected notable decrease in melting properties. Among each level of tofu, oiling off area showed significant increase with increasing TSC. Increase in tofu proportion as well as different TSC concentration resulted in decrease in free oil. The control cheese with 1% TSC (CC2C) had maximum oiling off, and with increase in tofu proportion there was a corresponding reduction (P < 0.05) in the oiling off area. It was observed that increase approximately 10% tofu in the blends with 0.5% TSC cause marked reduction in oiling off area by approximately 47%. There was rapid increase in oiling off area during the early stage of cooking. According to observation, free oil formation of cheese with 1% TSC (C2C) was higher than that of the cheese with 0.5% TSC (C1C), especially during 2.5 to 10 min (P > 0.05). Oiling off area of treatments decreased independently of trisodium citrate prolong cooking as the proportion of tofu increased.  相似文献   

17.
Kes, a traditional Turkish dairy product, is commonly produced in the northern Anatolian region of Turkey. Kes samples were obtained from local markets in Ordu vicinity and were investigated for some chemical, biochemical, and sensorial analyses. The mean values of dry matter (DM), fat, fat in DM, salt, salt in DM, ash, and pH were found to be 56.17 ± 6.07, 8.79 ± 2.84, 15.78 ± 5.39, 3.22 ± 1.35, 5.68 ± 2.19, 4.31 ± 1.29 g/100 g cheese, and 4.75 ± 0.59, respectively. The WSN/TN, TCA-SN/TN and PTA-SN/TN values were between 1.79–28.53, 1.67–23.24, and 0.44–17.56%, respectively. SDS-PAGE showed that both αs–CN and β–CN fractions were not completely hydrolyzed in all Kes cheese samples. αs–CN, β–CN, and γ-casein and other peptides fractions determined as 34.57 ± 5.21, 33.74 ± 4.21, and 31.37 ± 6.82%, respectively. Panelists gave high scores (above 7 out of 10) to all samples for all the attributes considered.  相似文献   

18.
徐杭蓉  郑远荣  刘振民 《食品工业》2020,(4):139-140,141,142
研究稻米油替代乳脂肪对涂抹再制干酪微观结构的影响。以切达干酪为原料,添加不同比例稻米油制备涂抹再制干酪,测定不同稻米油比例样品的微观结构和脂肪酸含量。结果表明,稻米油替代乳脂肪可以增加再制干酪产品长链脂肪酸,减少其短链脂肪酸、中链脂肪酸比例。稻米油替代对涂抹再制干酪的脂肪酸饱和度和链长的影响,导致再制干酪体系中脂肪球大小和分布的差异。对照组脂肪球小而分布均匀,植物油替代比例增加导致更大的脂肪球,通过微观结构观察,稻米油替代比例增大至50%时,开始出现较大直径且分布不均匀的脂肪球。因此,稻米油替代比例应控制在50%以下较为适宜。  相似文献   

19.
《Journal of dairy science》2021,104(11):12173-12183
Relationships between dairy farm practices, the composition and properties of raw milk, and the quality of the resulting cheese are complex. In this review, we assess the effect of farm factors on the quality of bovine raw milk intended for cheesemaking. The literature reports several prominent farm-related factors that are closely associated with milk quality characteristics. We describe their effects on the composition and technological properties of raw milk and on the quality of the resulting cheese. Cow breed, composite genotype, and protein polymorphism all have noticeable effects on milk coagulation, cheese yield, and cheese composition. Feed and feeding strategy, dietary supplementation, housing and milking system, and seasonality of milk production also influence the composition and properties of raw milk, and the resulting cheese. The microbiota in raw milk is influenced by on-farm factors and by the production environment, and may influence the technological properties of the milk and the sensory profile of certain cheese types. Advances in research dealing with the technological properties of raw milk have undoubtedly improved understanding of how on-farm factors affect milk quality attributes, and have refuted the concept of one milk for all purposes. The specific conditions for milk production should be considered when the milk is intended for the production of cheese with unique characteristics. The scientific identification of these conditions would improve the current understanding of the complex associations between raw milk quality and farm and management factors. Future research that considers dairy landscapes within broader perspectives and develops multidimensional approaches to control the quality of raw milk intended for long-ripening cheese production is recommended.  相似文献   

20.
Influence of different levels (0, 0.15, 0.35 or 0.50%) of microparticulated whey protein (MWP) on yield and quality of low‐fat (~7.3 g/100 g) Cheddar cheese was investigated. MWP improved cheese yield due to the water‐binding ability of denatured whey protein. MWP addition decreased meltability but improved the textural properties beneficial for shredding and slicing, by decreasing sensory firmness. The results emphasise the role of MWP as an inert filler within cheese matrix, in improving cheese yield and creating a softer texture without compromising the sensory or overall quality of cheese, even with moisture increases in 0.35 or 0.50% MWP cheeses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号