首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The LRPIM method is adopted to simulate the two-dimensional natural convection problems within enclosed domain of different geometries. In this paper, the vorticity-stream function form of N-S equations is taken as the governing equations. It was observed that the obtained results agreed very well with others available in the literatures, and with the same nodal density, the accuracy achieved by the LRPIM method is much higher than that of the finite difference (FD) method. The numerical examples show that the present LRPIM method can successfully deal with incompressible flow problems on randomly distributed nodes. Received: 2 April 2002 / Accepted: 6 January 2003 The authors would like to thank Mr. Y. T. Gu for his contribution to this work.  相似文献   

2.
 A meshless method is developed for the stress analysis of two-dimensional solids, based on a local weighted residual method with the Heaviside step function as the weighting function over a local subdomain. Trial functions are constructed using radial basis functions (RBF). The present method is a truly meshless method based only on a number of randomly located nodes. No domain integration is needed, no element matrix assembly is required and no special treatment is needed to impose the essential boundary conditions. Effects of the sizes of local subdomain and interpolation domain on the performance of the present method are investigated. The behaviour of shape parameters of multiquadrics (MQ) has been systematically studied. Example problems in elastostatics are presented and compared with closed-form solutions and show that the proposed method is highly accurate and possesses no numerical difficulties. Received: 10 November 2002 / Accepted: 5 March 2003  相似文献   

3.
 A mesh free method called point interpolation method (PIM) is presented for static and mode-frequency analysis of two-dimensional piezoelectric structures. In the present method, the problem domain and its boundaries are represented by a set of properly scattered nodes. The displacements and the electric potential of a point are interpolated by the values of nodes in its local support domain using shape functions derived based on a point interpolation scheme. Techniques are discussed to surmount the singularity of the moment matrix. Variational principle together with linear constitutive piezoelectric equations is used to establish a set of system equations for arbitrary-shaped piezoelectric structures. These equations are assembled for all quadrature points and solved for displacements and electric potentials. A polynomial PIM program has been developed in MATLAB with matrix triangularization algorithm (MTA), which automatically performs a proper node enclosure and a proper basis selection. Examples are also presented to demonstrate the accuracy and stability of the present method and their results are compared with the conventional FEM results from ABAQUS as well as the analytical or experimental ones. Received: 6 February 2002 / Accepted: 5 August 2002  相似文献   

4.
 Simultaneous optimization with respect to the structural topology, actuator locations and control parameters of an actively controlled plate structure is investigated in this paper. The system consists of a clamped-free plate, a H 2 controller and four surface-bonded piezoelectric actuators utilized for suppressing the bending and torsional vibrations induced by external disturbances. The plate is represented by a rectangular design domain which is discretized by a regular finite element mesh and for each element the parameter indicating the presence or absence of material is used as a topology design variable. Due to the unavailability of large-scale 0–1 optimization algorithms, the binary variables of the original topology design problem are relaxed so that they can take all values between 0 and 1. The popular techniques in the topology optimization area including penalization, filtering and perimeter restriction are also used to suppress numerical problems such as intermediate thickness, checkerboards, and mesh dependence. Moreover, since it is not efficient to treat the structural and control design variables equally within the same framework, a nested solving approach is adopted in which the controller syntheses are considered as sub processes included in the main optimization process dealing with the structural topology and actuator locations. The structural and actuator variables are solved in the main optimization by the method of moving asymptotes, while the control parameters are designed in the sub optimization processes by solving the Ricatti equations. Numerical examples show that the approach used in this paper can produce systems with clear structural topology and high control performance. Received 16 November 2001 / Accepted 26 February 2002  相似文献   

5.
Local multiquadric approximation for solving boundary value problems   总被引:2,自引:0,他引:2  
 This paper presents a truly meshless approximation strategy for solving partial differential equations based on the local multiquadric (LMQ) and the local inverse multiquadric (LIMQ) approximations. It is different from the traditional global multiquadric (GMQ) approximation in such a way that it is a pure local procedure. In constructing the approximation function, the only geometrical data needed is the local configuration of nodes fallen within its influence domain. Besides this distinct characteristic of localization, in the context of meshless-typed approximation strategies, other major advantages of the present strategy include: (i) the existence of the shape functions is guaranteed provided that all the nodal points within an influence domain are distinct; (ii) the constructed shape functions strictly satisfy the Kronecker delta condition; (iii) the approximation is stable and insensitive to the free parameter embedded in the formulation and; (iv) the computational cost is modest and the matrix operations require only inversion of matrices of small size which is equal to the number of nodes inside the influence domain. Based on the present LMQ and LIMQ approximations, a collocation procedure is developed for solutions of 1D and 2D boundary value problems. Numerical results indicate that the present LMQ and LIMQ approximations are more stable than their global counterparts. In addition, it demonstrates that both approximation strategies are highly efficient and able to yield accurate solutions regardless of the chosen value for the free parameter. Received: 10 October 2002 / Accepted: 15 January 2003  相似文献   

6.
The least-squares meshfree method for solving linear elastic problems   总被引:2,自引:0,他引:2  
 A meshfree method based on the first-order least-squares formulation for linear elasticity is presented. In the authors' previous work, the least-squares meshfree method has been shown to be highly robust to integration errors with the numerical examples of Poisson equation. In the present work, conventional formulation and compatibility-imposed formulation for linear elastic problems are studied on the convergence behavior of the solution and the robustness to the inaccurate integration using simply constructed background cells. In the least-squares formulation, both primal and dual variables can be approximated by the same function space. This can lead to higher rate of convergence for dual variables than Galerkin formulation. In general, the incompressible locking can be alleviated using mixed formulations. However, in meshfree framework these approaches involve an additional use of background grids to implement lower approximation space for dual variables. This difficulty is avoided in the present method and numerical examples show the uniform convergence performance in the incompressible limit. Therefore the present method has little burden of the requirement of background cells for the purposes of integration and alleviating the incompressible locking. Received: 16 December 2001 / Accepted: 4 November 2002  相似文献   

7.
A comparison between weak form meshless local Petrov-Galerkin method (MLPG) and strong form meshless diffuse approximate method (DAM) is performed for the diffusion equation in two dimensions. The shape functions are in both methods obtained by moving least squares (MLS) approximation with the polynomial weight function of the fourth order on the local support domain with 13 closest nodes. The weak form test functions are similar to the MLS weight functions but defined over the square quadrature domain. Implicit timestepping is used. The methods are tested in terms of average and maximum error norms on uniform and non-uniform node arrangements on a square without and with a hole for a Dirichlet jump problem and involvement of Dirichlet and Neumann boundary conditions. The results are compared also to the results of the finite difference and finite element method. It has been found that both meshless methods provide a similar accuracy and the same convergence rate. The advantage of DAM is in simpler numerical implementation and lower computational cost.  相似文献   

8.
 Lagrange interpolation is extended to the complex plane in this paper. It turns out to be composed of two parts: polynomial and rational interpolations of an analytical function. Based on Lagrange interpolation in the complex plane, a complex variable boundary collocation approach is constructed. The method is truly meshless and singularity free. It features high accuracy obtained by use of a small number of nodes as well as dimensionality advantage, that is, a two-dimensional problem is reduced to a one-dimensional one. The method is applied to two-dimensional problems in the theory of plane elasticity. Numerical examples are in very good agreement with analytical ones. The method is easy to be implemented and capable to be able to give the stress states at any point within the solution domain. Received: 20 August 2002 / Accepted: 31 January 2003  相似文献   

9.
In this paper the meshless local radial point interpolation (MLRPI) method is applied to simulate a nonlinear partial integro-differential equation arising in population dynamics. This PDE is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. In MLRPI method, it does not require any background integration cells so that all integrations are carried out locally over small quadrature domains of regular shapes, such as circles or squares in two dimensions and spheres or cubes in three dimensions. The point interpolation method is proposed to construct shape functions using the radial basis functions. A one-step time discretization method is employed to approximate the time derivative. To treat the nonlinearity, a simple predictor–corrector scheme is performed. Also the integral term, which is a kind of convolution, is treated by the cubic spline interpolation. The numerical studies on sensitivity analysis and convergence analysis show that our approach is stable. Finally, two numerical examples are presented showing the behavior of the solution and the efficiency of the proposed method.  相似文献   

10.
 Underwater explosion arising from high explosive detonation consists of a complicated sequence of energetic processes. It is generally very difficult to simulate underwater explosion phenomena by using traditional grid-based numerical methods due to the inherent features such as large deformations, large inhomogeneities, moving interface and so on. In this paper, a meshless, Lagrangian particle method, smoothed particle hydrodynamics (SPH) is applied to simulate underwater explosion problems. As a free Lagrangian method, SPH can track the moving interface between the gas produced by the explosion and the surrounding water effectively. The meshless nature of SPH overcomes the difficulty resulted from large deformations. Some modifications are made in the SPH code to suit the needs of underwater explosion simulation in evolving the smoothing length, treating solid boundary and material interface. The work is mainly focused on the detonation of the high explosive, the interaction of the explosive gas with the surrounding water, and the propagation of the underwater shock. Comparisons of the numerical results for three examples with those from other sources are quite good. Major features of underwater explosion such as the magnitude and location of the underwater explosion shock can be well captured. Received: 2 April 2002 / Accepted: 20 September 2002  相似文献   

11.
 A solution to the problem of radiation stability of metallic materials for nuclear power reactors is suggested. It is by selecting and creating alloys with structural (unhealable) vacancies, whose concentration is determined precisely by the stoichiometry of alloys, but being independent of temperature and any other external influences. The advantages as well as difficulties arising from the technical application of radiation stable alloys proposed are considered. Received: 8 April 1997/Accepted: 28 May 1997  相似文献   

12.
 Based on the mechanism of shear locking phenomenon and potential functional of Reissner plate bending problem, the generalized mixed variational principle for Reissner plate analysis is presented by parameterized Lagrange multiplier method. The proposed variational functional contains splitting factors which are able to adjust the shear potential energy and shear complementary energy components in it. The generalized mixed finite element formulation of bilinear quardrilateral element for Reissner plate bending analysis is established in terms of the new variational principle. The stiffness of the finite element model can be changed by the alteration of the splitting factors. Thus both the free of shear locking and higher accuracy are obtained by the choice of appropriate splitting factors. The most important is that this paper gives one self-adaptative way to choose the splitting factors for thin and moderately thick plates. This results in the comparative order of magnitude between the bending stiffness and shear stiffness for the arbitrary thickness. In the application of two-by-two exact Gaussian integration scheme to the proposed mixed element model, numerical examples show that free of locking is obtained even in the thin plate limit and high accuracy is given for moderately thick plate. Received: 15 January 2002 / Accepted: 10 September 2002 This work is partially supported by the National Nature Science Fund in China under Award No. 53978376  相似文献   

13.
 This paper presents a rate-independent elastoplastic constitutive model for (nearly) incompressible biological fiber-reinforced composite materials. The constitutive framework, based on multisurface plasticity, is suitable for describing the mechanical behavior of biological fiber-reinforced composites in finite elastic and plastic strain domains. A key point of the constitutive model is the use of slip systems, which determine the strongly anisotropic elastic and plastic behavior of biological fiber-reinforced composites. The multiplicative decomposition of the deformation gradient into elastic and plastic parts allows the introduction of an anisotropic Helmholtz free-energy function for determining the anisotropic response. We use the unconditionally stable backward-Euler method to integrate the flow rule and employ the commonly used elastic predictor/plastic corrector concept to update the plastic variables. This choice is expressed as an Eulerian vector update the Newton's type, which leads to a numerically stable and efficient material model. By means of a representative numerical simulations the performance of the proposed constitutive framework is investigated in detail. Received: 12 December 2001 / Accepted: 14 June 2002 Financial support for this research was provided by the Austrian Science Foundation under START-Award Y74-TEC. This support is gratefully acknowledged.  相似文献   

14.
In this paper, a meshless local radial point collocation method based on multiquadric radial basis function is proposed to analyze the free vibration of laminated composite plates. This method approximates the governing equations based on first-order shear deformation theory using the nodes in the support domain of any data center. Natural frequencies of the laminated composite plates with various boundary conditions, side-to-thickness ratios, and material properties are computed by present method. The choice of shape parameter, effect of dimensionless sizes of the support domain on accuracy, convergence characteristics are studied by several numerical examples. The results are compared with available published results which demonstrate the accuracy and efficiency of present method.  相似文献   

15.
 This work determines the electrophoretic motion of two colloidal particles embedded in a viscous and unbounded electrolyte. Contrary to other works in the field, the advocated method does not calculate the perturbation electric potential and the electrolyte Stokes flow in the whole fluid domain and its range of applications is not restricted to the case of uniformly charged particles embedded in a uniform electric field E . The idea consists in establishing and solving thirteen Fredholm boundary integral equations (one of the second kind plus twelve of the first kind). The numerical implementation is briefly reported. Numerical benchmarks and new results are both presented and discussed with a special attention to the interactions between the particles. Received 26 February 2001  相似文献   

16.
17.
 A mixed formulation for Timoshenko beam element on Winkler foundation has been derived by defining the total curvature in terms of the bending moment and its second order derivation. Displacement and moment have been chosen as primary variables, while slope and first derivation of moment have been chosen as secondary variables. The behaviour matrix for Timoshenko beam element has been obtained in mixed form by using weak formulation with equilibrium and compatibility equations. The presented formulation makes the analysis of beams free of shear locking. Received: 10 July 2002 / Accepted: 14 January 2003  相似文献   

18.
 Time Discontinuous Galerkin methods require the factorization of a matrix larger than that exploited in standard implicit schemes. Therefore, they lend themselves to implementations based on predictor-multicorrector solution algorithms. In this paper, various convergent and computationally efficient iterative methods implemented in the unknown displacements for determining the solution of non linear systems are proposed. The iterative solutions presented here differ from those implemented in the unknown velocities in that they are computationally superior. The results of numerical simulations relevant to Duffing oscillators and to a stiff spring pendulum discretized with finite elements which are designed to evaluate the efficacy of these iterative methods with non-linear systems, show a low-computational expense when compared to earlier iterative schemes. Received: 27 May 2002 / Accepted: 28 January 2003 The financial support from the Italian Ministry for Education, Universities and Research (MIUR) is acknowledged. However, opinions expressed in this paper are those of the writers, and do not necessarily reflect the views of the sponsoring agency.  相似文献   

19.
 In this paper we report some recent advances regarding applications using the method of finite spheres; a truly meshfree numerical technique developed for the solution of boundary value problems on geometrically complex domains. First, we present the development of a preprocessor for the generation of nodal points on two-dimensional computational domains. Then, the development of a specialized version of the method of finite spheres using point collocation and moving least squares approximation functions and singular weight functions is reported for rapid computations in virtual environments involving multi-sensory (visual and touch) interactions. Dedicated to the memory of Prof. Mike Crisfield, for his cheerfulness and cooperation as a colleague and friend over many years.  相似文献   

20.
 This paper presents a symmetric collocation BEM (SCBEM)/FEM coupling procedure applicable to 2-D time domain structural–acoustic interaction problems. The use of symmetry for BEM not only saves memory storage but also enables the employment of efficient symmetric equation solvers, especially for BEM/FEM coupling procedure. Compared with symmetric Galerkin BEM (SGBEM) where double boundary integration should be carried out, SCBEM can reduce significantly the computing cost. Two numerical examples are included to illustrate the effectiveness and accuracy of the proposed method. Received: 2 November 2001 / Accepted: 27 May 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号