首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
节理面对岩体物理力学性状具有显著影响。以千枚岩为例,开展常规三轴压缩试验,讨论节理面与最大主应力夹角、围压对岩石破坏模式的影响。结果表明:1)节理面与最大主应力夹角在5°~45°,破坏模式有张拉-剪切复合型破坏、横交节理面剪切与沿节理面滑动的复合型破坏以及沿节理面间的剪切滑动破坏三种;2)随节理面与最大主应力夹角增大,峰值强度逐渐降低,破坏模式发生由复合型向单一型的转变;3)千枚岩变形、强度参数具有明显"夹角效应",节理面与最大主应力夹角对弹性模量和黏聚力影响较为显著;4)围压增大会降低岩石节理面的力学效应。  相似文献   

2.
节理岩体的力学特性直接影响工程岩体的安全。为了研究节理岩体的各向异性力学特性和破坏特征,设计进行了0°,30°,45°,60°,75°和90°等6种角度断续节理砂岩的三轴压缩试验,详细分析了节理倾角对断续节理岩体变形强度特征和破坏模式的影响。研究结果表明:①在加载过程中,随着围压增大,断续节理砂岩应力-应变曲线的屈服阶段逐渐明显,峰值强度和残余强度逐渐提高,破坏时延性特征逐渐明显;②随着节理倾角增大,断续节理砂岩的变形模量、抗压强度、黏聚力和内摩擦角等力学参数均呈现先减小后增大的U型变化趋势;③节理对岩样破坏裂纹的形成与开展具有明显的诱导和控制作用,不同倾角岩样的破裂面均顺节理倾角方向发展,当节理倾角与岩样计算破坏角接近的时候,岩样的破裂面顺节理面开展,变形和强度参数达到极小值;④随着围压增大,不同倾角断续节理岩样的变形和强度参数差别逐渐减小,各向异性特征逐渐减弱;⑤断续节理砂岩的破坏模式可分为张拉破坏、折线型的复合剪张破坏、沿节理面剪切破坏等3种类型,节理倾角的分布决定了断续节理砂岩在加载作用下的变形破坏模式,变形破坏模式的差异决定了断续节理砂岩变形和强度参数的各向异性特征。研究成果可为工程中节理岩体的各向异性特征分析提供较好的参考。  相似文献   

3.
节理剪切试验及其表面形貌特征变化分析   总被引:6,自引:0,他引:6  
 节理表面形貌是影响节理抗剪强度的重要因素之一。采用试验方法研究岩石节理表面形貌与其抗剪强度之间的关系;运用RYL–600岩石剪切流变仪对天然岩石节理在不同法向应力下进行剪切试验,得到不同法向应力下节理的抗剪强度曲线,并运用TALYSURF CLI 2000扫描仪将节理表面在每次剪切前后进行高精度激光扫描测试,得到岩石节理表面的三维扫描图。分析节理在不同法向应力作用下的抗剪强度与节理表面形貌变化的关系,计算岩石节理表面轮廓平均角的加权平均值 ,发现随着法向应力的增加,节理峰值抗剪强度增加,随着剪切次数增加, 呈减小趋势。说明节理的抗剪强度与法向应力和节理表面形貌特征参数 有关。  相似文献   

4.
含天然节理灰岩加、卸荷力学特性试验研究   总被引:2,自引:1,他引:1  
为模拟一般地下节理岩体开挖加卸荷效应,进行含天然节理灰岩试样的加轴压、卸围压应力控制试验及常规三轴压缩试验,得到2种试验条件下的全应力-应变曲线.对试验后的岩样破坏特征、强度和变形特性的分析结果表明:无论是常规三轴压缩还是加轴压卸围压试验,其破坏均有沿节理面和穿切节理面2种方式.常规三轴压缩表明,当节理面与最大主应力夹角<40°时,岩样为穿切节理面破坏,当夹角>40°时,岩样为沿节理面破坏.对加、卸荷试验而言,2类破坏看不出与夹角的关系.加、卸荷试验沿节理面破坏试样的峰值强度、残余强度都明显低于穿切节理面破坏试样的峰值强度和残余强度.加、卸荷破坏试验中,沿节理面破坏试样没有明显的屈服阶段,峰值强度后强度迅速降低,没有出现三轴压缩破坏中的屈服和强度提高过程.  相似文献   

5.
为了研究岩石节理面在不同应力和渗流耦合条件下的长期力学特性,自主研制岩石节理面应力-渗流耦合流变试验系统,主要由主机、垂向、剪切伺服加载系统、剪切盒、渗流控制系统以及数据动态釆集系统等部分组成,通过配备专门设计的剪切盒装置,能保证节理面在剪切或者剪切流变试验过程中提供最大5 MPa渗透压力,试样的密封方面既考虑了胶套在围压的作用下对试样周围的包裹实现防渗,同时采用主动与被动加载相结合的方式,满足圆形压头与立方体岩样紧密贴合,使得试验过程中节理面在应力渗流耦合剪切流变过程中不发生侧向渗漏。剪切加载可以实现上下任意一块试样固定,而对另一块进行剪切,也可以实现2个方向同时产生剪切位移;满足常法向应力(CNL)、常法向位移(CNV)下结构面剪切或剪切流变试验研究;并实现结构面剪切条件下渗透率的动态测量;该试验机还可开展结构面应力-渗流耦合作用下不同水力梯度和渗透压的剪切流变试验,并开展含节理面花岗岩在不同边界条件下的各类试验,验证了该系统的准确性和可靠性,为节理面应力-渗流耦合剪切流变特性研究提供了支撑,对丰富和完善岩石节理面应力-渗流耦合流变特性理论研究有一定的指导作用。  相似文献   

6.
为研究渗流条件下岩石节理的剪切力学特性,采用基于RDS–200型岩石直剪仪改造的剪切–渗流试验装置,分别进行了10组无渗流自然状态下和25组渗流状态下的非规则砂岩节理直剪试验,分析渗透水压、法向应力和节理粗糙度等因素对岩石节理剪切力学特性的影响,并提出渗流状态下非规则砂岩节理峰值剪切强度经验公式。研究结果表明,与无渗流自然状态相比,岩石节理在渗流作用下整体呈现峰值剪切强度减小,峰值剪切位移增大和峰前剪切刚度减小的特征。基于Barton提出的岩石节理峰值剪切强度经验公式,结合有效应力原理,并考虑渗透水压对基本摩擦角的影响,提出渗流条件下非规则砂岩节理峰值剪切强度经验公式。该公式仅增加了2个易于获取的试验参数(岩石节理壁强度JCS和渗透水压),对渗流条件下砂岩节理剪切强度试验数据拟合效果较好,对于准确估计渗流条件下岩石节理峰值剪切强度具有一定帮助。  相似文献   

7.
引入3个在一定范围内独立于测量尺度的三维形貌参数表征岩石节理形貌,并基于形貌参数建立了新的岩石节理峰值剪切强度准则。同时采用新准则和Barton公式计算了23对岩石节理的峰值剪切强度并与室内直剪试验结果对比,新准则的计算值与试验结果较为接近而Barton公式在一定程度上低估了节理剪切强度,表明新准则能更好地描述节理峰值剪切强度。新准则的三维形貌参数反映了不同形貌特征对剪切强度的贡献,物理意义明确,并且形貌参数可在一定范围内采用任意尺度测量,因而有利于新准则的工程应用。进一步分析表明:在规则齿形节理情况下,新准则可退化到Patton公式的形式,因而新准则实质是Patton公式的三维推广。  相似文献   

8.
岩石节理经历不同变形历史的剪切试验研究   总被引:3,自引:7,他引:3  
基于不规则的人工岩石节理经历不同剪切变形历史的剪切试验,分析了岩石节理剪切变.形特性及与变形历史的依存关系。结果表明,岩石节理峰值和残余剪切应力随垂直应力的增加呈线性增长趋势,而剪胀特性已变得不明显。两类节理面在经历不同垂直应力下的剪切变形历史后,剪切应力均不再出现尖峰;而不同剪切变形历史主要影响节理的剪切强度,对剪胀特性影响较小。  相似文献   

9.
断续节理直剪试验与PFC2D数值模拟分析   总被引:8,自引:7,他引:8  
 在以往有关断续节理模型试验和数值模拟的研究基础上,设计不同连通情况和法向应力的断续节理模型材料直剪试验,并采用颗粒流离散元软件PFC2D对模型试验进行全真数值模拟。以贯通节理试样、完整试样的剪应力–应变数值模拟曲线和模型试验曲线吻合作为PFC细观力学参数选取准则,并利用获得的细观力学参数对共面断续节理试样直剪试验进行数值重现。对比分析数值模拟曲线和模型试验曲线,对断续节理受剪贯通的力学机制进行研究。根据模型试验和数值试验的成果,分析断续节理预剪面上应力随剪应变的演化过程,发现剪切过程中的剪胀效应使得岩桥承担更多的压应力,从而提高了岩桥的抗剪强度。对断续节理岩体在直剪加载条件下的破坏机制进行讨论,将整个剪切过程分为线弹性阶段、初裂阶段、峰值阶段、峰后阶段及残余阶段5个阶段。  相似文献   

10.
唐志成  王晓川 《岩土工程学报》2017,39(12):2312-2319
除粗糙度外,节理上、下面壁的接触状态是影响其剪切力学性质的重要因素。采用水泥砂浆制备若干不同形貌的节理,对其上、下面壁沿剪切方向错开不同的位移量、形成不同的接触状态以模拟不同偶合度的节理,在常法向应力条件下进行试验研究。试验结果表明:峰值剪切强度随错开位移量的增加而呈非线性减少,但错开位移对峰值剪切强度的影响随法向应力的增加而减弱;峰值剪切位移随错开位移量的增加逐步变大;剪切刚度随错开位移量的增加逐步减少直至某一恒定值,且在高法向应力下错开位移量对剪切刚度的影响更为明显。采用几种不同的简单函数分析峰值剪切强度与错开位移量之间的关系,在偶合节理峰值剪切强度准则的基础上提出不同接触状态节理的峰值剪切强度准则。与已有的准则相比,新准则采用的描述节理接触状态的参数易于确定且更为客观。  相似文献   

11.
The shear behavior is regarded as the dominant property of rock joints and is dramatically affected by the joint surface roughness. To date, the effect of surface roughness on the shear behavior of rock joints under static or cyclic loading conditions has been extensively studied, but such effect under impact loading conditions keeps unclear. To address this issue, a series of impact shear tests was performed using a novel-designed dynamic experimental system combined with the digital image correlation (DIC) technique. The dynamic shear strength, deformability and failure mode of the jointed specimens with various joint roughness coefficients (JRC) are comprehensively analyzed. Results show that the shear strength and shear displacement characteristics of the rock joint under the impact loading keep consistent with those under static loading conditions. However, the temporal variations of shear stress, slip displacement and normal displacement under the impact loading conditions show obviously different behaviors. An elastic rebound of the slip displacement occurs during the impact shearing and its value increases with increasing joint roughness. Two identifiable stages (i.e. compression and dilation) are observed in the normal displacement curves for the rougher rock joints, whereas the joints with small roughness only manifest normal compression displacement. Besides, as the roughness increases, the maximum compression tends to decrease, while the maximum dilation gradually increases. Moreover, the microstructural analysis based on scanning electron microscope (SEM) suggests that the roughness significantly affects the characteristics of the shear fractured zone enclosing the joint surface.  相似文献   

12.
Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behaviors.The Barton-Bandis(B-B) joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints.The B-B model accounts for asperity roughness and strength through the joint roughness coefficient(JRC) and joint wall compressive strength(JCS) parameters.Nevertheless,many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr-Coulomb(M-C) model,which is only appropriate for smooth and non-dilatant joints.This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior.To bridge the B-B and the M C models,this paper aims to provide a linearized implementation of the B-B model using a tangential technique to obtain the equivalent M-C parameters that can satisfy the nonlinear shear behavior of rock joints.These equivalent parameters,namely the equivalent peak cohesion,friction angle,and dilation angle,are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing.The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre-and post-peak regions of shear displacement,respectively.Likewise,the pre-and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established.Verifications of the linearized implementation of the B-B model show that the shear stress-shear displacement curves,the dilation behavior,and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.  相似文献   

13.
利用水泥砂浆材料浇注3组不同表面形貌的节理试件,由常法向应力下的直剪试验研究节理的剪切力学性质,并分析法向应力、三维形貌特征对抗剪强度的影响。直剪试验结果表明:峰值剪胀角与法向应力成反变化关系,与粗糙程度呈正变化关系;峰值抗剪强度与法向应力、粗糙程度均呈正变化关系。分析了JRC-JCS准则计算值偏低于试验值的原因,根据试验现象建议采用三维形貌参数、抗拉强度描述节理的剪切强度。对比分析了含三维形貌参数的峰值抗剪强度准则,建议低法向应力水平下采用双曲线形式的峰值剪切强度准则估算岩石节理的峰值抗剪强度。  相似文献   

14.
节理表面形貌和接触状态对节理剪切力学性质有重要的影响。用砂浆材料的单轴压缩试验和光滑节理直剪试验得到材料和光滑节理的宏观力学性质参数,对颗粒流数值模拟的节理细观力学性质参数进行标定。用颗粒流离散元数值软件(PFC2D)构建人工粗糙节理表面形貌,对不同表面形貌的节理在不同接触状态下的剪切强度性质进行颗粒流直剪数值模拟试验,获得其峰值剪切强度。同时进行人工材料节理直剪试验,与颗粒流直剪数值模拟试验结果进行对比分析,数值试验与直剪试验结果吻合较好,验证了颗粒流直剪数值模拟试验与直剪试验具有同等的精度,可以作为各种表面形貌的节理在不同法向应力水平下抗剪强度研究的一种补充方法,以解决节理直剪试验中表面形貌损失对其剪切强度的影响,也可以在少量节理直剪试验的基础上,预估相同形貌的节理在不同接触状态下的剪切强度性质,同时还可以在现场测定不同粗糙度的节理表面形貌,预估其在不同接触状态、不同法向应力下的剪切力学性质。从而解决节理直剪试验中在相同形貌节理试件取样和制备困难的问题,且具有经济、方便、快捷、可重复性强等特点。  相似文献   

15.
 节理的三维形貌特征是影响节理剪切力学行为的重要因素。为了深入研究三维形貌特征对岩石节理峰值抗剪强度的影响,制备花岗岩和红砂岩人工劈裂岩石节理试样,并在常法向应力条件下进行了两种岩样节理的直剪试验,法向应力变化范围为0.325~8.0 MPa。在直剪试验前对节理表面形貌进行测量,并计算其三维形貌参数最大接触面积比A0、最大有效剪切倾角 和粗糙度参数C。通过对三维形貌参数和直剪试验结果的分析,基于三维形貌参数最大有效剪切倾角 和粗糙度参数C,建立了节理峰值抗剪强度模型。最后,引用Grasselli的30组直剪试验数据对模型进行验证计算,并结合本文的20组试验数据与Grasselli和夏才初的节理强度模型进行对比分析,结果表明新模型有合理的改进,而且能够很好的预测节理的峰值抗剪强度。  相似文献   

16.
Rock slope analyses cannot be performed without a knowledge, or at least, a reliable estimation of the shear strength of the potential failure surface. Some of the parameters concurrent to determination of the shear strength along joints of rocks with a rigid behaviour are considered, for the purpose of making this determination as quick and accurate as possible. Some remarks are especially developed, based on experimental data, covering joint wall compressive strength, the uniaxial compressive strength of the rock material, the basic friction angle and joint roughness.  相似文献   

17.
 节理表面形貌是影响节理峰值抗剪强度的重要因素,采用人工模拟材料节理分别在0.5,1.0,1.5,2.0,3.0 MPa的法向应力下进行直剪试验,研究三维形貌参数与峰值抗剪强度之间的关系。选用节理面有效三维平均倾角 、粗糙度系数 、最大可能接触面积比 作为表征节理面粗糙度的参数。直剪试验前、后采用TJXW–3D型便携式岩石表面形貌测量仪对节理表面进行形貌数据测试;根据直剪试验结果建立节理峰值剪胀角与三维形貌参数 , , 之间的关系;建议采用新的强度准则计算节理的峰值抗剪强度。新公式的计算结果与试验值具有较好的一致性,并将其与Barton公式的计算结果进行比较,可知Barton公式的计算结果低于试验实测值。  相似文献   

18.
节理的剪切强度准则和剪切分量Ⅰ:剪切强度准则   总被引:1,自引:0,他引:1  
节理的峰值剪切强度受表面三维形貌和材料力学属性的影响,已有的文献着重阐述形貌参数的重要性。总结分析了材料的抗拉强度对节理剪切力学性质的影响。采用最大可能接触面积比、最大视倾角、视倾角分布参数描述节理沿剪切方向的三维形貌特征,用双曲线函数描述不同法向应力下的剪胀角,提出新的剪切强度准则,计算值与试验值保持了较好的一致性。采用其中28组岩石节理的直剪试验数据对新准则与JRC-JCS准则进行了比较,结果表明JRC-JCS准则的计算值与试验值相比差异更大。新准则采用的形貌参通过由形貌测试确定,避免了主观因素对形貌参数取值的影响,可用用于估算岩石节理的峰值剪切强度。  相似文献   

19.
 采用满足正态分布的随机函数,构造岩石节理剖面的形貌,为研究受剪岩石节理的细观剪切特性和宏观剪胀效应提供研究基础。利用UDEC软件,基于CY微段节理模型,开发随机形貌岩石节理直剪特性的数值分析程序,采用CY微段节理模型的细观剪切力学参数,探讨微段节理的细观剪切特性和岩石节理的宏观剪切响应,提出节理抗剪强度参数与节理面粗糙度系数JRC之间的拟合关系。得到如下结论:JRC越大,岩石节理的宏观剪切峰值强度和剪胀角随之增大,而峰值剪切位移与JRC成反变化关系;随着法向应力的增加,节理的剪胀效应逐渐减弱;这些数值结论得到模型实验的充分验证。微段节理的细观切向爬坡和剪胀效应是岩石节理产生宏观剪胀的细观力学机制。通过对随机形貌岩石节理的宏观剪胀数值曲线性态进行分析,提出能考虑节理粗糙度JRC和法向应力影响的非线性剪胀本构模型,该模型较好描述了受剪岩石节理的剪缩段和剪胀段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号