首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以0.14水胶比成型活性粉末混凝土(RPC)为基体,采用凝灰岩石粉取代部分胶凝材料制备RPC,研究凝灰岩石粉掺量对RPC抗压强度、抗折强度和微观结构的影响。结果表明:RPC的抗压强度、抗折强度随凝灰岩石粉掺量增加呈下降趋势。凝灰岩石粉在胶凝体系中发挥了一定的火山灰效应和填充效应,改善了RPC的微观结构;掺量为5%凝灰岩石粉掺制备的RPC能满足力学要求,28 d龄期的抗压强度为119 MPa,抗折强度为12.4 MPa,孔隙率最低,且界面区最密实;当凝灰岩石粉掺量超过5%后,对微观结构的改善效果有所下降,当凝灰岩石粉掺量超过20%时,已不利于RPC微观结构的改善。  相似文献   

2.
石灰石粉锂渣超早强超高强混凝土研究   总被引:5,自引:1,他引:4  
研究了石灰石粉及其与锂渣复合掺加对混凝土强度的影响.研究表明,石灰石粉掺量在10%以下时有利于抗压强度的发展,在20%以下时有利于抗折强度的发展.10%的石灰石粉和10%的锂渣复合显示出优良的复合效应,当单位水泥用量为464kg/m3 时,7d抗压强度达到了105MPa.28d强度达到了124MPa,60d强度达到了132MPa.可代替矿渣、硅灰制备超早强高强超高强混凝土.  相似文献   

3.
论文针对粉煤灰掺量一定的情况下,研究石灰石粉硅粉复掺对混凝土的抗压强度和抗冻耐久性能的影响。试验结果表明,在石灰石粉掺量为5%~10%时,混凝土强度比基准高。随着石灰石粉掺量的增加,混凝土的抗压强度降低。且随着混凝土的龄期增加,混凝土28 d和56 d抗压强度几乎不变。在混凝土冻融循环次数一定时,在粉煤灰掺量为5%和硅粉掺量为10%时,在石灰石粉掺量为5%~10%时,混凝土的抗冻性能较好,且高于基准混凝土。  相似文献   

4.
孙建伟  王强  陈忠辉 《硅酸盐通报》2016,35(8):2524-2529
在28 d抗压强度相近的前提下,制备了纯水泥混凝土、大掺量粉煤灰混凝土、大掺量矿渣混凝土,测定了不同混凝土的后期抗压强度、抗氯离子渗透性,以及胶凝材料的化学结合水、硬化浆体中的Ca(OH)2含量.结果表明:含大掺量矿物掺合料的混凝土的后期强度和抗氯离子渗透性均明显高于纯水泥混凝土;大掺量矿渣混凝土的后期强度高于同掺量的大掺量粉煤灰混凝土;复合胶凝材料的后期水化程度增长率明显高于纯水泥;复合胶凝材料硬化浆体中后期Ca(OH)2含量明显低于纯水泥硬化浆体.  相似文献   

5.
将活性矿物掺入混凝土中可以有效提高其使用性能.基于此,制备了不同粉煤灰和超细矿渣配比的高性能混凝土试件,测试了高性能混凝土的抗压强度、劈裂抗拉强度、抗折强度、抗氯离子渗透能力,分析了单掺和复掺粉煤灰和超细矿渣对混凝土力学与耐久性能的影响.结果表明:粉煤灰和矿渣掺入可以有效提高混凝土的力学性能;当粉煤灰和矿渣掺量分别为1...  相似文献   

6.
黄丽静  安笑静  任亚丽 《当代化工》2021,50(7):1513-1516,1521
为了研究氯盐与冻融耦合作用下超细粉煤灰混凝土的碳化性能,对不同掺量超细粉煤灰混凝土进行了抗压强度试验、基准碳化试验、冻融-碳化试验和盐冻-碳化耦合试验.结果表明:在标准养护条件下,混凝土试件中掺入少量超细粉煤灰会降低试件本身的抗压强度,但降低幅度不大,而掺入大量的超细粉煤灰其抗压强度下降比较明显.干燥养护下,掺入超细粉煤灰对试件的抗压强度影响较小,其抗压强度随掺量没有出现骤降.掺入适量的超细粉煤灰能提高混凝土的抗碳化性能,随着超细粉煤灰掺量增加,抗碳化性降低,当超细粉煤灰掺量超过25%时对混凝土抗碳化性能影响不大.当超细粉煤灰参量一定时,盐冻-碳化循环试验对混凝土碳化深度最不利,且超细粉煤灰混凝土的碳化深度与循环次数呈现二次函数关系.  相似文献   

7.
研究了石膏品种和掺量对粉煤灰-石灰石粉-熟料复合胶凝材料胶砂强度的影响。研究发现,在石膏掺量相同的情况下,掺SO3含量较高石膏的试样2抗折强度和抗压强度均大于试样1(所掺石膏中SO3含量较低)。当采用同一品种石膏时,复合胶凝材料强度随石膏掺量增加而提高。试验显示在配制混合材料掺量较大的复合胶凝材料时,适当增加SO3含量可以促进复合胶凝材料强度的发展。  相似文献   

8.
磨细粉煤灰与石灰石粉复合配制C80高性能混凝土的研究   总被引:3,自引:0,他引:3  
利用磨细粉煤灰和石灰石粉配制高强高性能混凝土.结果表明,当石粉和粉煤灰复合时,二者能发挥互补优势.当用10%的石粉与10%的粉煤灰复合时,混凝土坍落度提高,1h坍落度损失小,28d的抗压强度达92.2MPa,且该混凝土的抗渗性、抗碳化性和抗冻性优异.  相似文献   

9.
粉煤灰和矿粉加入混凝土中可以有效消耗工业固体废弃物,保护环境.基于此,利用室内试验方法采用粉煤灰和矿粉取代部分水泥,制备了不同粉煤灰以及矿粉掺量的混凝土材料,测试了这些材料的抗压强度、抗氯离子侵蚀性能、抗冻性能以及抗碳化性能.结果表明:双掺粉煤灰和矿粉条件下混凝土的抗压强度和抗冻性能均要优于单掺粉煤灰或矿粉;当粉煤灰或矿粉单掺量为24%时,混凝土的电通量最小,其抗氯离子侵蚀能力最强;双掺粉煤灰和矿粉混凝土的28 d碳化深度比素混凝土小39.4%~53.5%.  相似文献   

10.
粉煤灰和矿粉加入混凝土中可以有效消耗工业固体废弃物,保护环境.基于此,利用室内试验方法采用粉煤灰和矿粉取代部分水泥,制备了不同粉煤灰以及矿粉掺量的混凝土材料,测试了这些材料的抗压强度、抗氯离子侵蚀性能、抗冻性能以及抗碳化性能.结果表明:双掺粉煤灰和矿粉条件下混凝土的抗压强度和抗冻性能均要优于单掺粉煤灰或矿粉;当粉煤灰或矿粉单掺量为24%时,混凝土的电通量最小,其抗氯离子侵蚀能力最强;双掺粉煤灰和矿粉混凝土的28 d碳化深度比素混凝土小39.4%~53.5%.  相似文献   

11.
Solid solutions of diphosphates of zinc and copper and of zinc and cobalt were synthesized from mixtures of pure diphosphates at temperatures up to 1000°C. Their X-ray diffractometry patterns varied continuously from one end member to the other. Solid solutions of orthophosphates of composition Zn3−xCox(PO4)2, with x = 0.4–1.6, were formed at temperatures up to 950°C; all exhibited the structure of γ-Zn3(PO4)2. Solid solutions of orthophosphates of composition Zn3−xCux(PO4)2 exhibited more-complex behavior. At 1000°C and copper contents of 20–80 mol%, a phase that is related to Cu3(PO4)2, termed here the "ε-phase," predominated. At 850°–950°C and in the region from 20 mol% to ∼33 mol% of copper, the solid solutions (the "η-phase") adopted the structure of graftonite. At 800°–900°C and 10–15 mol% of copper, the solid solutions exhibited a new structure (the "δ-phase"), which we found to be related to the mineral sarcopside. At temperatures 950°C, the solutions that contained 5–15 mol% of copper (the "β-phase") had the structure of β-Zn3(PO4)2, whereas at 800°–850°C, solutions with 5 mol% of copper (the "-phase") exhibited the structure of γ-Zn3(PO4)2. Attempts to synthesize Cu+ZnPO4 and Cu+Cu2+Zn3(PO4)3 were unsuccessful.  相似文献   

12.
油气储运系统已经与保障国家经济的发展息息相关,介绍了油气储运系统中油气回收问题及腐蚀与防护问题,并提出了相应的解决措施。  相似文献   

13.
Gemini型表面活性剂的结构和性质与传统的表面活性剂有很大的不同,例如Gemini型表面活性剂可以视为两个普通表面活性剂在亲水基或者靠近亲水基处由连接基团通过化学键连接而成;Gemini表面活性剂的C20值和cmc值都比传统表面活性剂的值要低很多。着重介绍了Gemini型表面活性剂的特性,结构与表面活性的关系以及应用。  相似文献   

14.
为了提高油田的生产效率,设计最佳的油气集输处理的工艺流程,更好地完成油气水分离处理的任务。对油气集输工艺技术进行优化,发挥高效油气水分离处理设备的优势,提高油气水处理的质量,保证油气集输工艺顺利实施,获得最佳的油田产量外输。  相似文献   

15.
建设创新型国家是我们中华民族的历史责任。“自主创新、重点突破、支撑发展、引领未来”的16字方针应当成为我们未来创新活动的指南。建设创新型国家把自主创新放在首位,并提出了引领未来的高标准要求。钢铁科技创新必须突出重点,抓住创新成果产业化这个关键,支撑起行业和国民经济的发展。  相似文献   

16.
相比已经完善丰富的开采和勘探技术,油气的运输以及储存却仍然存在不足之处。我国对能源安全提出更加严格要求的同时,对区域经济的发展规划也有足够重视。因此,保障油气管道的安全则成为了我国能源安全战略的重中之重。在阐释油气管道现阶段在储运安全保障技术发展状况的基础上,分析了现存的问题及解决问题的手段,并指出未来可能使用的目标策略,为今后研究者提供一定程度上的借鉴经验。  相似文献   

17.
石油天然气的地质勘探开发目的是为了获得最佳的油气产能而进行的地质研究工作。石油天然气地质勘探工作具有非常重要的意义,通过地质勘探获得有价值的地层信息资料,对储层油气的显示进行评价和分析,确定具有工业开采价值,才能投入开发生产,为油田创造最佳的经济效益。  相似文献   

18.
膜的污染和劣化及其防治对策   总被引:25,自引:0,他引:25  
较为系统地介绍了膜污染和劣化的定义和特点,因膜污染和劣化而造成的膜性能变化,以及如何预防、减少或清除膜污染和劣化的一些通用方法。  相似文献   

19.
20.
Gel permeation chromatographic (GPC) and thin-layer chromatographic (TLC) studies of polystyrene, polybutadienes (BR), and their copolymers (SBR) have been carried out. GPC primarily separates them on the basis of molecular size, and TLC, on the basis of composition. Methods of obtaining absolute molecular weight distributions for BR and SBR based upon variations of the Strasbourg Universal Calibration procedure are described. In particular, [η]–M relationships in both the GPC solvent (THF) and in a second solvent (toluene) were used; in addition, results of statistical mechanical calculations for \documentclass{article}\pagestyle{empty}\begin{document}$\overline {s^2 }$\end{document} (based on the assumption of negligible steric hindrance and freely rotating bonds) were applied. An experimental comparison of these methods was carried out, and use of the [η]–M relationships for both solvents was found to give satisfactory results. The predictions of the statistical theory were too low. A detailed study of polymer–solvent–gel interaction in the GPC unit was made through investigation of ternary phase equilibrium in the (polystyrene)–THF–(polymer) system. The polymers studied included BR and SBR with varying styrene contents. Experimental techniques for TLC separations of BR, SBR, and polystyrene according to the composition are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号