共查询到20条相似文献,搜索用时 15 毫秒
1.
针对滚动轴承故障特征微弱以及振动信号的非平稳性,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和自适应白噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)样本熵相结合的滚动轴承故障诊断方法。首先采用MCKD算法降低滚动轴承信号内的噪声干扰,突出信号中的冲击特性;然后利用CEEMDAN方法对降噪信号进行分解,根据峭度-相关系数准则选择包含主要故障信息的敏感固有模态函数(intrinsic mode function,IMF)分量;计算各敏感IMF分量的样本熵构成高维特征向量;最后将高维特征向量作为支持向量机(support vector machine,SVM)的输入,对滚动轴承的工作状态和故障类型进行识别。通过实测滚动轴承故障信号的分析,证明了所提方法有效性,并为此类问题的解决提供了一种可行方法。 相似文献
2.
提出一种基于自适应白噪声完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)奇异值熵和支持向量机(support vector machine,SVM)的转子故障诊断方法。利用CEEMDAN方法首先对非平稳的转子振动信号分解得到若干个表征信号自身特性的固有模态函数(intrinsic mode function,IMF),并通过虚假IMF分量判别法,剔除对于故障特征不敏感的IMF,以保证故障信息提取的准确性和有效性,在此基础上产生初始特征向量矩阵。并对此矩阵进行奇异值分解得到矩阵奇异值,使其作为故障特征向量,通过归一化处理得到奇异值熵,并以此作为SVM的输入,对转子的工作状态进行识别。研究结果表明:该方法可有效应用于转子故障诊断,实现对转子工作状态和故障类型的有效诊断。 相似文献
3.
《机电工程》2021,38(5)
针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM参数优化进行了研究,引入了一种新的群智能优化算法,用麻雀搜索算法(SSA)对SVM参数进行了优化,提高了寻优速度以及轴承的故障分类准确率;该方法先采用自适应白噪声完整经验模态分解(CEEMDAN)算法分解信号,获得了若干个固有模态函数(IMF);再采用相关系数方法选择有用IMF分量,并进行了重新组合;最后,计算重构信号的多尺度熵作为特征向量,输入SSA优化的SVM进行了故障分类。研究结果表明:采用该方法能够准确地获得故障信息,且识别准确率高;与PSO、GA优化的SVM相比,该方法的故障诊断分类性能更好。 相似文献
4.
5.
为较好地提取强噪声覆盖下滚动轴承振动信号的故障信息,提高故障诊断识别与分类精度,基于模糊熵(Fuzzy Entropy, FE)理论,提出了一种自适应白噪声平均总体经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, CEEMDAN)模糊熵与卷积神经网络(Convolutional Neural Network, CNN)结合的故障诊断方法,充分利用了模糊熵数据独立性、相对一致性以及模糊性与随机性优势。通过循环抽样求取原始信号模糊熵,利用CEEMDAN方法分解,再由皮尔森相关系数筛选最佳分量组,最终将其输入CNN进行故障诊断,并采用t-SNE流行学习算法进行聚类可视化。其结果证实了不同工况下,相比经验模态分解模糊熵、集合经验模态分解模糊熵方法,所提方法具有更强的鲁棒性与泛化性,且t-SNE可视化使结果更直观。 相似文献
6.
7.
由于现有信息资源利用不充分,实际复杂工况下滚动轴承故障诊断特征提取不精,文中提出一种基于全矢自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)的滚动轴承故障诊断方法。CEEMDAN不仅保证了EEMD分解的效果,而且很好地抑制了重构误差。其做法是在EMD方法的基础上有次数地加入自适应白噪声IMF分量。根据相关系数最大原则选取CEEMDAN分解得到的水平通道和垂直通道前5阶IMF分量进行数据重构,再对重构数据用全矢谱技术融合,得到基于CEEMDAN的矢量谱,最后对融合后的信号做包络分析处理求其包络谱,提取故障特征,并与EEMD包络谱对比。试验结果表明,所提方法能够更全方位、更准确地提取故障特征。 相似文献
8.
9.
针对多尺度散布熵(MDE)在对滚动轴承故障信号进行特征提取时会出现信号信息严重损失的问题,提出了时移多尺度散布熵(TMDE)的概念,并由此提出基于TMED和支持向量机(SVM)的滚动轴承故障诊断方法.首先,通过仿真信号对TMDE和MDE进行了对比分析,结果表明,TMDE得到的熵值更稳定且对数据长度依赖小.其次,将所提方法应用到滚动轴承的故障诊断实例中,结果表明,TMDE获得了比MDE更高的滚动轴承不同类型和不同程度故障的诊断精度. 相似文献
10.
风机齿轮箱振动信号成分复杂,而经验模态分解(EMD)在故障诊断中存在模态混叠和端点效应问题.针对此问题,研究了一种EEMD样本熵和高斯径向基核函数的SVM分类器的滚动轴承故障诊断方法.以风机齿轮箱滚动轴承为研究对象,提取了内圈故障、外圈故障、滚动体故障和正常轴承4种状态振动信号,利用EEMD和小波分别对振动信号分解降噪并筛选主要IMF分量;计算前4阶IMF分量的样本熵作为特征向量;最后将特征向量输入高斯径向基核函数的SVM模型进行故障识别.结果表明:EEMD算法对端点效应和模态混叠都有一定抑制作用,EEMD样本熵和SVM相结合可有效识别滚动轴承故障类型,故障识别率为97.5%,为工程应用中风机齿轮箱滚动轴承故障诊断提供参考. 相似文献
11.
针对轴承诊断典型样本较少的问题,提出一种基于极点对称模态分解(ESMD)和支持向量机(SVM)的滚动轴承故障诊断方法。其对信号进行ESMD分解,提取含主要故障信息的IMF能量值进行归一化处理,构成能量特征向量并建立SVM,即可准确判断轴承的工作状态。工程实例分析表明,该方法诊断准确率较高(100%),能够有效应用于轴承的故障诊断。 相似文献
12.
基于改进的ITD和模糊熵的滚动轴承故障诊断方法 总被引:1,自引:0,他引:1
提出了改进的本征时间尺度分解方法(improved intrinsic time-scale decomposition,IITD)。针对从滚动轴承的非线性和非平稳振动信号中提取故障特征难的问题,在IITD基础上,结合模糊熵的概念,提出了一种新的滚动轴承故障诊断方法。首先采用IITD方法对滚动轴承振动信号进行分解,再对得到的前几个有意义的合理旋转分量计算其模糊熵,并将熵值作为特征向量输入支持向量机分类器,从而实现滚动轴承故障类别的诊断。实验数据分析结果表明,所提出的方法可有效地实现滚动轴承故障类别的诊断。 相似文献
13.
齿轮故障信号具有不平稳特性,故障信号特征向量难提取,典型的齿轮故障数据样本少。针对这些问题,提出基于总体平均经验模式分解(EEMD)、模糊熵和支持向量机(SVM)相结合的诊断方法。首先通过传感器采集得到加速度信号,然后,通过EEMD降低模态混叠,并将加速度信号分解成多个稳定的本征模态函数信号(IMFs)。其次,利用模糊熵能够表现信号复杂程度并且稳定的性质,取多个稳定IMFs的前几项计算模糊熵。因为SVM能够在小样本集情况下建立决策规则,所以将IMFs的前几项模糊熵值作为特征向量输入SVM训练。最后,SVM算法与常用神经网络比较,对样本训练、测试并诊断故障,说明SVM算法优于神经网络。齿轮故障诊断实验结果表明,所提出的方法诊断准确率达92.5%,可实现齿轮故障信息提取和齿轮故障的有效诊断。 相似文献
14.
《机械传动》2017,(3)
为了提高轴承故障特征信息提取的有效性,实现轴承故障模式智能识别,提高故障诊断效率。提出一种基于SVD-LMD模糊熵相结合的特征量化和PNN网络识别相结合的滚动轴承故障诊断方法。首先运用SVD降噪技术对原始信号降噪,运用LMD分解将降噪后的非稳定信号分解成若干个稳定的乘积函数分量(PF)。其次利用模糊熵能表征时间序列复杂程度并具有稳定的统计性,提取PF分量的模糊熵,组成N维特征向量,实现故障特征量化。构建PNN网络模型,将特征向量输入PNN训练,实现故障类型识别。最后对比PNN算法与BP算法性能,验证PNN算法的优越性。实验数据分析结果表明,所提方法在少量数据样本情况下故障诊断准确率高达93.75%。 相似文献
15.
16.
针对传统的局部均值分解(LMD)方法不能有效提取微弱高频信号成分的问题,提出了一种基于微分的微分局部均值分解(DLMD)方法,在此基础上,将DLMD、样本熵和模糊聚类分析相结合,提出了一种基于DLMD样本熵和模糊聚类的滚动轴承故障诊断方法。该方法首先对滚动轴承振动信号进行微分局部均值分解,得到若干具有物理意义的乘积函数(PF)分量,然后求取各PF分量的样本熵并将其作为特征向量,最后通过模糊聚类对特征向量进行识别分类。实验结果表明,基于DLMD样本熵和模糊聚类相结合的方法能够准确、有效地对滚动轴承故障信号进行识别分类。 相似文献
17.
基于ITD模糊熵和GG聚类的滚动轴承故障诊断 总被引:1,自引:0,他引:1
提出了一种本征时间尺度分解模糊熵和GG模糊聚类的滚动轴承故障诊断方法。首先,将滚动轴承的振动信号进行ITD分解,得到若干个固有旋转分量和一个趋势项。然后,将PR分量分别与原始信号进行相关性分析,筛选出前3个含主要特征信息的PR分量,并将筛选的PR分量的模糊熵作为特征向量。最后,将特征向量输入到GG分类器中进行聚类识别。通过模糊熵、样本熵和近似熵对比,实验结果表明模糊熵能更好的表征故障信号的特征信息;通过GG聚类、GK 聚类和FCM聚类对比,实验结果表明GG聚类效果明显优于FCM、GK的聚类效果。因此,实验证明了基于ITD模糊熵和GG聚类的滚动轴承故障诊断方法的有效性和优越性。 相似文献
18.
19.
为更好地对滚动轴承进行状态监测和故障诊断,采集3种不同状态下的滚动轴承振动信号,根据振动信号特点提取其时域和频域的相关特征,然后分别利用SVM(支持向量机)和BP神经网络进行模式识别。不断减少每种状态下训练样本集的个数,利用2种不同的方法进行模式识别。当每种状态下的样本个数为3个时,支持向量机仍然能准确地将测试样本进行分类,而BP神经网络完全无法识别。实验结果表明,支持向量机比BP神经网络更适合于小样本的故障诊断。 相似文献
20.
基于改进多尺度模糊熵的滚动轴承故障诊断方法 总被引:1,自引:0,他引:1
滚动轴承故障诊断的关键是敏感故障特征的提取。多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)是一种衡量时间序列复杂性的有效分析方法,已经被用于滚动轴承振动信号故障特征提取。针对MFE算法中多尺度粗粒化过程存在的缺陷,笔者采用滑动均值的方式代替粗粒化过程,提出了改进的多尺度模糊熵算法,并通过仿真信号将其与MFE进行了对比分析。在此基础上,提出了一种基于改进多尺度模糊熵与支持向量机的滚动轴承故障诊断方法。最后,将所提故障诊断方法应用于的滚动轴承实验数据分析,并与基于MFE的故障诊断方法进行了对比,结果验证了所提方法的有效性和优越性。 相似文献